2023.2024-1/2023.2024 và 2022.2023-1/2022.2023.So sánh hai phân số trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2=25\\ \Rightarrow x^2=5^2\\ \Rightarrow x=5\)
\(b,6\cdot x^2=150\\ \Rightarrow x^2=150:6\\ \Rightarrow x^2=25\\ \Rightarrow x^2=5^2\\ \Rightarrow x=5\)
a.
Ta có: \(\widehat{BAE}+\widehat{BAC}+\widehat{CAF}=180^0\)
\(\Rightarrow\widehat{BAE}+90^0+\widehat{CAF}=180^0\)
\(\Rightarrow\widehat{BAE}+\widehat{CAF}=90^0\) (1)
Lại có \(BE\perp d\Rightarrow\Delta BAE\) vuông tại E
\(\Rightarrow\widehat{BAE}+\widehat{ABE}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{CAF}=\widehat{ABE}\)
Xét hai tam giác ABE và CAF có:
\(\left\{{}\begin{matrix}\widehat{ABE}=\widehat{CAF}\\\widehat{AEB}=\widehat{CFA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta ABE\sim\Delta CAF\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{CF}=\dfrac{BE}{AF}\Rightarrow AE.AF=BE.CF\)
b.
\(S_{ABC}=\dfrac{1}{2}AB.AC\Rightarrow AC=\dfrac{2S_{ABC}}{AB}=\dfrac{2.24}{6}=8\left(cm\right)\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{6.8}{\sqrt{6^2+8^2}}=4,8\left(cm\right)\)
\(\left(3x\right)^2-9y^4=\left(3x\right)^2-\left(3y^2\right)^2=\left(3x-3y^2\right)\left(3x+3y^2\right)=9\left(x-y^2\right)\left(x+y^2\right)\)
\(16x^2-\left(y^2\right)^2=\left(4x\right)^2-\left(y^2\right)^2=\left(4x-y^2\right)\left(4x+y^2\right)\)
\(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{32}\right)^{16}\\ =>\left[\left(\dfrac{1}{2}\right)^4\right]^x=\left[\left(\dfrac{1}{2}\right)^5\right]^{16}\\ =>\left(\dfrac{1}{2}\right)^{4\cdot x}=\left(\dfrac{1}{2}\right)^{5\cdot16}\\ =>\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{80}\\ =>4x=80\\ =>x=\dfrac{80}{4}\\ =>x=20\)
Vậy: ..
11) Ta có:
`9^5=(3^2)^5=3^10`
`27^3=(3^3)^3=3^9`
Vì: `9<10=>3^9<3^10`
`=>9^5>27^3`
12) Ta có:
`3^500=(3^5)^100=243^100`
`7^300=(7^3)^100=343^100`
Vì: `243<343=>243^100<343^100`
`=>3^500<7^300`
13) Ta có:
`8^5=(2^3)^5=2^15=2*2^14`
`3*4^7=3*(2^2)^7=3*2^14`
Vì: `2<3=>2*2^14<3*2^14`
`=>8^5<3*4^7`
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
b: ΔBAE có BA=BE
nên ΔBAE cân tại B
Ta có: \(\widehat{CAE}+\widehat{BAE}=\widehat{BAC}=90^0\)
\(\widehat{KAE}+\widehat{BEA}=90^0\)(ΔAKE vuông tại K)
mà \(\widehat{BAE}=\widehat{BEA}\)(ΔBAE cân tại B)
nên \(\widehat{CAE}=\widehat{KAE}\)
=>AE là phân giác của góc KAC
c: Xét ΔBAK vuông tại K và ΔBCA vuông tại A có
\(\widehat{ABK}\) chung
Do đó: ΔBAK~ΔBCA
=>\(\dfrac{BA}{BC}=\dfrac{BK}{BA}\left(3\right)\)
Xét ΔBAK có BF là phân giác
nên \(\dfrac{BK}{BA}=\dfrac{KF}{FA}\left(4\right)\)
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Xét ΔAKC có DE//AK
nên \(\dfrac{KE}{EC}=\dfrac{DA}{DC}=\dfrac{BA}{BC}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\dfrac{KF}{FA}=\dfrac{KE}{EC}\)
=>FE//AC
Xét tứ giác AFED có
FE//AD
AF//DE
Do đó: AFED là hình bình hành
=>FD cắt AE tại trung điểm của mỗi đường
=>BD cắt AE tại trung điểm của AE(6)
Xét tứ giác AGEC có
GE//AC
AG//EC
Do đó: AGEC là hình bình hành
=>AE cắt GC tại trung điểm của AE(7)
Từ (6),(7) suy ra BD,AE,GC đồng quy
a; A = \(\dfrac{n+1}{n}\)
ƯCLN(n + 1; n) = d
⇒ \(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
⇒ n + 1 - n ⋮ d
⇒ (n - n) + 1 ⋮ d
⇒ 1 ⋮ d
Vậy d = 1
Hay A = \(\dfrac{n+1}{n}\) là phân số tối giản với mọi n khác 0
b; B = \(\dfrac{n-1}{n-2}\) (n \(\in\) Z; n ≠ 2)
Gọi ƯCLN (n - 1; n - 2) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}n-1⋮d\\n-2⋮d\end{matrix}\right.\)
⇒ (n - 1 - n + 2) ⋮ d
⇒ (n - n) + (2 - 1)⋮ d
1 ⋮ d
B = \(\dfrac{n-1}{n+2}\) là phân số tối giản với mọi 2 ≠ n \(\in\) Z
\(a,2^n+2^{n+4}=272\\ \Rightarrow2^n+2^n.2^4=272\\ \Rightarrow2^n+2^n.16=272\\ \Rightarrow2^n.17=272\\ \Rightarrow2^n=16\\ \Rightarrow2^n=2^4\\ \Rightarrow n=4\)
\(b,5^{n+2}-5^n=600\\ \Rightarrow5^n.5^2-5^n=600\\ \Rightarrow5^n\left(25-1\right)=600\\ \Rightarrow5^n.24=600\\ \Rightarrow5^n=25\\ \Rightarrow5^n=5^2\\ \Rightarrow n=2\)
\(a)2^n+2^{n+4}=272\)
\(2^n+2^n.2^4=272\)
\(2^n\left(1+2^4\right)=272\)
\(2^n.17=272\)
\(2^n=16\)
\(2^n=2^4\)
\(\Rightarrow n=4\)
\(b)\)\(5^{n+2}-5^n=600\)
\(5^n.5^2-5^n=600\)
\(5^n\left(5^2-1\right)=600\)
\(5^n.24=600\)
\(5^n=25\)
\(5^n=5^2\)
\(\Rightarrow n=2\)
Chúc bạn học tốt ❤️❤️
→ Bạn ơi số 2930 tròn chục rồi bạn nhé! Bạn xem lại đề bài nha!
Ta có:
+)
\(\dfrac{2023.2024-1}{2023.2024}\\ =\dfrac{2023.2024}{2023.2024}-\dfrac{1}{2023.2024}\\ =1-\dfrac{1}{2023.2024}\)
+)
\(\dfrac{2022.2023-1}{2022.2023}\\ =\dfrac{2022.2023}{2022.2023}-\dfrac{1}{2022.2023}\\ =1-\dfrac{1}{2022.2023}\)
Nhận xét:
Vì \(2023.2024>2022.2023\) nên:
\(\dfrac{1}{2023.2024}< \dfrac{1}{2022.2023}\\\Rightarrow1-\dfrac{1}{2023.2024}>1-\dfrac{1}{2022.2023}\)
hay \(\dfrac{2023.2024-1}{2023.2024}>\dfrac{2022.2023-1}{2022.2023}\)
Vậy...