K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

X là số có hai chữ số và lớn hơn 15; 

Là gì vậy mọi người 

X là số có ba chữ số và bé hơn 105;

NV
11 tháng 8

\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\left(\sqrt{3}-1\right)}=\sqrt{2}\left(\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\right)\)

\(=\sqrt{2}\left(\dfrac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\right)\)

\(=\sqrt{2}\left(\dfrac{6}{9-3}\right)=\sqrt{2}\)

11 tháng 8

- Tiểu học -

Tổng chiều dài và chiều rộng miếng đất đó là: 

` 1400 : 2 = 700 (m)`

Ta có sơ đồ: 

Chiều dài: 4 phần

Chiều rộng: 3 phần

Tổng số phần bằng nhau là: 

`3+4=7` (phần)

Giá trị 1 phần là: 

`700 : 7 = 100 (m)`

Chiều dài miếng đất là: 

`100` x `4 = 400 (m)`

Chiều rộng miếng đất là: 

`100 ` x `3 = 300 (m)`

Diện tích miếng đất là: 

`400` x `300 = 120000 (m^2)`

11 tháng 8

- Cấp 2 dưới lớp 9 -

Gọi chiều rộng của miếng đất là `x (m)`

Điều kiện: `1440>  x > 0 `

=> Chiều dài miếng đất là: \(\dfrac{4}{3}\) `x `

Do chu vi của miếng đất là 1400m nên: 

`(x +` \(\dfrac{4}{3}\) `x) . 2 = 1400`

`=>` \(\dfrac{7}{3}\) `x = 700`

`=> x = 300` (Thỏa mãn)

Vậy chiều rộng miếng đất là `300m`

CHiều dài miếng đất là: 

`300 . 4 : 3 = 400 (m)`

Diện tích miếng đất là: 

`400 . 300 = 120000 (m^2)`

 

11 tháng 8

1234567890^2

11 tháng 8

1.524157875x1018

\(E=2x^2+4x+13\)

\(=2\left(x^2+2x+\dfrac{13}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{11}{2}\right)\)

\(=2\left(x+1\right)^2+11>=11>0\forall x\)

\(F=2x^2-3x+6\)

\(=2\left(x^2-\dfrac{3}{2}x+3\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{39}{16}\right)\)

\(=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{39}{8}>=\dfrac{39}{8}>0\forall x\)

11 tháng 8

E=2x2+4x+13

E=2(x2+2x+1)+11

E=2(x+1)2+11

2(x+1)2≥0,∀x

⇒2(x+1)2+11 lớn hơn 0 ∀x

⇒E luôn nhân giá trị dương

F=2x2-3x+6

 2F=4x2-6x+12

2F=(4x2-6x+\(\dfrac{9}{4}\))+\(\dfrac{15}{4}\)

2F=(2x+\(\dfrac{3}{2}\))2+\(\dfrac{15}{4}\)

F=\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\)

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)≥0,∀x

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\) lớn hơn 0 ∀x

⇒F luôn nhận giá trị dương

 

ΔMNP vuông tại M

=>\(\widehat{MNP}+\widehat{P}=90^0\)

=>\(\widehat{N}=90^0-45^0=45^0\)

Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)

=>\(\dfrac{10}{MP}=tan45=1\)

=>MP=10(cm)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(NP=\sqrt{10^2+10^2}=10\sqrt{2}\left(cm\right)\)

11 tháng 8

\(5^2\cdot x-2^4\cdot x=3^4-6\cdot3^2\\ \Rightarrow25x-16x=81-6\cdot9\\ \Rightarrow9x=81-54\\ \Rightarrow9x=27\\ \Rightarrow x=27:9\\ \Rightarrow x=3\)

\(5^2\cdot x-2^4\cdot x=3^4-6\cdot3^2\)

=>\(25x-16x=81-6\cdot9=81-54=27\)

=>9x=27

=>x=3

11 tháng 8

6x=59-25

6x= 34

x=34:6

x=17/3

NV
11 tháng 8

\(6x-25=59\)

\(6x=59+25\)

\(6x=84\)

\(x=84:6\)

\(x=14\)

a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHB

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AE\cdot AB\left(1\right)\)

Xét ΔAFH vuông tại F và ΔAHC vuông tại H có

\(\widehat{FAH}\) chung

Do đó: ΔAFH~ΔAHC

=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AF\cdot AC\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

b: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(HA^2=HE^2+HF^2\)

Xét ΔEHA vuông tại H và ΔEBH vuông tại E có

\(\widehat{EHA}=\widehat{EBH}\left(=90^0-\widehat{HAE}\right)\)

Do đó: ΔEHA~ΔEBH

=>\(\dfrac{EH}{EB}=\dfrac{EA}{EH}\)

=>\(EH^2=EA\cdot EB\)

Xét ΔFHA vuông tại F và ΔFCH vuông tại F có

\(\widehat{FHA}=\widehat{FCH}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔFHA~ΔFCH

=>\(\dfrac{FH}{FC}=\dfrac{FA}{FH}\)

=>\(FH^2=FA\cdot FC\)

\(HA^2=HE^2+HF^2=EA\cdot EB+FA\cdot FC\)