Tìm số tự nhiên n sao cho tổng 1+2+3+...+n có giá trị là một số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tiền lãi là:
\(7500000\times15\%=1125000\) (đồng)
Đáp số: \(1125000\) đồng
Để tính số tiền lãi, ta có thể sử dụng công thức: Số tiền lãi = Số tiền vốn * Tỷ lệ lãi suất. Với số tiền vốn là 7,500,000 và tỷ lệ lãi suất là 15%, ta có: Số tiền lãi = 7,500,000 * 0.15 = 1,125,000 đồng. Vậy số tiền lãi mà cửa hàng đó đã kiếm được là 1,125,000 đồng.
a: \(2\sqrt{27}-3\sqrt{54}-\dfrac{1}{3}\sqrt{48}\)
\(=2\cdot3\sqrt{3}-3\cdot3\sqrt{6}-\dfrac{1}{3}\cdot4\sqrt{3}\)
\(=6\sqrt{3}-9\sqrt{6}-\dfrac{4}{3}\sqrt{3}=\dfrac{14}{3}\sqrt[]{3}-9\sqrt{6}\)
b: \(-\dfrac{1}{2}\sqrt{108}+\dfrac{1}{15}\cdot\sqrt{75}-\dfrac{1}{3}\cdot\sqrt{363}\)
\(=-\dfrac{1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{3}\cdot11\sqrt{3}\)
\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{11}{3}\sqrt{3}=-\dfrac{19}{3}\sqrt{3}\)
c: \(\dfrac{5}{8}\sqrt{48}-\dfrac{1}{33}\cdot\sqrt{363}+\dfrac{3}{14}\cdot\sqrt{147}\)
\(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}\)
\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}=\dfrac{11}{3}\sqrt{3}\)
d:
ĐKXĐ: x>=0; x<>9
Sửa đề:\(\dfrac{x-9}{x-3\sqrt{x}}-\dfrac{x-4}{\sqrt{x}+2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}-\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}+3-x+2\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{-x+3\sqrt{x}+3}{\sqrt{x}}\)
e: ĐKXĐ: x>=0; x<>4
\(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{x-4\sqrt{x}+4}{\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}\)
\(=\sqrt{x}+1-\sqrt{x}+2=3\)
\(\left(3x-1\right)^3=125\)
=>\(\left(3x-1\right)^3=5^3\)
=>3x-1=5
=>3x=6
=>\(x=\dfrac{6}{3}=2\)
\(\left(3x-1\right)^3=125\\ \Rightarrow\left(3x-1\right)^3=5^3\\ \Rightarrow3x-1=5\\ \Rightarrow3x=5+1\\ \Rightarrow3x=6\\ \Rightarrow x=6:3\\ \Rightarrow x=2\)
a: Số sản phẩm người công nhân đó làm trong 3 giờ là:
36:9x3=4x3=12(sản phẩm)
b: SỐ tiền kiếm được là:
50000x36=1800000(đồng)
`a,` Trong `1` giờ, công nhân làm được là:
`36:9=4(` sản phẩm `)`
Trong `3` giờ, công nhân làm được là:
`4` $\times $ `3 = 12(` sản phẩm `)`
`b,` Số tiền kiếm được từ `12` sản phẩm là:
`50 000` $\times $ `12 = 600000(` đồng `)`
a. Để A chia hết cho 7, ta cần xác định giá trị của x sao cho tổng A chia hết cho 7. 77 + 15 + 161 + x = 253 + x. Để 253 + x chia hết cho 7, ta cần xác định x sao cho 253 + x ≡ 0 (mod 7). 253 ≡ 1 (mod 7), vì vậy để A chia hết cho 7, x cần thỏa mãn x ≡ -1 ≡ 6
b. Để A không chia hết cho 7, ta cần xác định giá trị của x sao cho tổng A không chia hết cho 7. Để A không chia hết cho 7, x cần thỏa mãn x ≢ 6
a: Vì hệ số góc là -4 nên a=-4
=>y=-4x+b
Thay x=2 và y=-5 vào y=-4x+b, ta được:
b-8=-5
=>b=3
Vậy: y=-4x+3
b: Vì đồ thị hàm số y=ax+b song song với đường thẳng y=2x-1
nên \(\left\{{}\begin{matrix}a=2\\b\ne-1\end{matrix}\right.\)
Vậy: y=2x+b(b\(\ne\)-1)
c: Thay x=0 và y=4 vào y=ax+b, ta được:
\(a\cdot0+b=4\)
=>b=4
=>y=ax+4
Thay x=4/5 và y=0 vào y=ax+4, ta được:
\(\dfrac{4}{5}a+4=0\)
=>\(\dfrac{4}{5}a=-4\)
=>a=-5
vậy: y=-5x+4
d: Vì đồ thị hàm số y=ax+b vuông góc với đường thẳng y=-2x+3 nên -2a=-1
=>\(a=\dfrac{1}{2}\)
Vậy: \(y=\dfrac{1}{2}x+b\)
Thay x=1/4 và y=-5 vào y=1/2x+b, ta được:
\(b+\dfrac{1}{2}\cdot\dfrac{1}{4}=-5\)
=>\(b=-5-\dfrac{1}{8}=-\dfrac{41}{8}\)
\(\dfrac{2023}{2016}=1+\dfrac{7}{2016}\)
\(\dfrac{2016}{2009}=1+\dfrac{7}{2009}\)
Vì: \(\dfrac{7}{2016}< \dfrac{7}{2009}\) nên \(\dfrac{2023}{2016}< \dfrac{2016}{2009}\)
\(\dfrac{2023}{2016}\) và \(\dfrac{2016}{2009}\)
Ta có:
\(\dfrac{2023}{2016}=1+\dfrac{7}{2016}\)
\(\dfrac{2016}{2009}=1+\dfrac{7}{2009}\)
Vì \(\dfrac{7}{2016}< \dfrac{7}{2009}\) nên
\(\Rightarrow1+\dfrac{7}{2016}< 1+\dfrac{7}{2009}\)
\(\Rightarrow\dfrac{2023}{2016}< \dfrac{2016}{2009}\)
Vậy \(\dfrac{2023}{2016}< \dfrac{2016}{2009}\)
a: Đặt *=x
Số cần tìm sẽ có dạng là \(\overline{3x5}\)
\(\overline{3x5}⋮9\)
=>\(3+x+5⋮9\)
=>x=1
=>*=1
b: Đặt *=x
Số cần tìm sẽ có dạng là \(\overline{1x2}\)
\(\overline{1x2}⋮3\)
=>\(1+x+2⋮3\)
=>\(x+3⋮3\)
mà x là số tự nhiên có 1 chữ số
nên \(x\in\left\{0;3;6;9\right\}\)
=>*\(\in\left\{0;3;6;9\right\}\)
c: Đặt *=x
Số cần tìm sẽ có dạng là \(\overline{1x5x}\)
\(\overline{1x5x}⋮3;\overline{1x5x}⋮9\)
=>\(1+x+5+x⋮9\)
=>\(2x+6⋮9\)
=>x=6
=>*=6
d: Đặt *=x
Số cần tìm sẽ có dạng là \(\overline{x46x}\)
\(\overline{x46x}⋮2;\overline{x46x}⋮5;\overline{x46x}⋮9\)
=>\(\left\{{}\begin{matrix}x=0\\x+4+6+x⋮9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\10⋮9\left(vôlý\right)\end{matrix}\right.\)
Vậy: Không có giá trị nào của * thỏa mãn yêu cầu
n=2
Giải chi tiết giúp e