K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BD+CD=BC

=>BC=15+20=35(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

=>AB=3k; AC=4k

Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)

=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)

=>\(25k^2=1225\)

=>\(k^2=49\)

=>k=7

=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

\(=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

BD+CD=BC

=>BC=15+20=35(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

=>AB=3k; AC=4k

Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)

=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)

=>\(25k^2=1225\)

=>\(k^2=49\)

=>k=7

=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH=\dfrac{21\cdot28}{35}=21\cdot\dfrac{4}{5}=16,8\left(cm\right)\)

a: Để hệ có nghiệm duy nhất thì \(\dfrac{3}{m}\ne\dfrac{-1}{1}=-1\)

=>\(m\ne-3\)

b: Để hệ vô nghiệm thì \(\dfrac{3}{m}=\dfrac{-1}{1}\ne\dfrac{6}{n+3}\)

=>\(\left\{{}\begin{matrix}m=-3\\n+3\ne-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\n\ne-9\end{matrix}\right.\)

c: Để hệ có vô số nghiệm thì \(\dfrac{3}{m}=\dfrac{-1}{1}=\dfrac{6}{n+3}\)

=>\(\left\{{}\begin{matrix}m=-3\\n+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\n=-9\end{matrix}\right.\)

9 tháng 8 2024

Ta có: `(a - b)^2 >= 0`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> a^2 + b^2 >= 2ab`

`<=> 2(a^2 + b^2 ) >= a^2 + 2ab + b^2 `

`<=> 2(a^2 + b^2) >= (a+b)^2`

`<=> a^2 + b^2 >= ((a+b)^2)/2`

`<=> a^2 + b^2 >= (4^2)/2`

`<=> a^2 + b^2 >= 16/2`

`<=> a^2 + b^2 >= 8 (đpcm)`

9 tháng 8 2024

\(a+b\ge4\)

\(\Leftrightarrow\left(a+b\right)^2\ge16\)

\(\Leftrightarrow a^2+b^2+2ab\ge16\left(1\right)\)

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^2+b^2\right)\ge16\)

\(\Rightarrow a^2+b^2\ge8\left(dpcm\right)\)

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

b: Xét (O) có

ΔBCD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tại B

=>CB\(\perp\)BD

mà OA\(\perp\)BC

nên OA//BD

c: Xét (O) có

OB là bán kính

EB\(\perp\)OB tại B

Do đó: EB là tiếp tuyến của (O)

DT
9 tháng 8 2024

a) \(\dfrac{x+2004}{x+2005}+\dfrac{x+2005}{2006}< \dfrac{x+2006}{2007}+\dfrac{x+2007}{2008}\\ \Rightarrow\left(\dfrac{x+2004}{2005}-1\right)+\left(\dfrac{x+2005}{2006}-1\right)< \left(\dfrac{x+2006}{2007}-1\right)+\left(\dfrac{x+2007}{2008}-1\right)\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}< \dfrac{x-1}{2007}+\dfrac{x-1}{2008}\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}-\dfrac{x-1}{2007}-\dfrac{x-1}{2008}< 0\\ \)

\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}\right)< 0\left(a\right)\)

Nhận thấy: \(\dfrac{1}{2005}>\dfrac{1}{2007},\dfrac{1}{2006}>\dfrac{1}{2008}\\ \Rightarrow\dfrac{1}{2005}-\dfrac{1}{2007}>0,\dfrac{1}{2006}-\dfrac{1}{2008}>0\\ \Rightarrow\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}>0\)

\(\left(a\right)\Rightarrow x-1< 0\Leftrightarrow x< 1\)

Vậy \(S=\left\{x|x< 1\right\}\)

DT
9 tháng 8 2024

b) \(\dfrac{x-2}{2002}+\dfrac{x-4}{2000}< \dfrac{x-3}{2001}+\dfrac{x-5}{1999}\\ \Rightarrow\left(\dfrac{x-2}{2002}-1\right)+\left(\dfrac{x-4}{2000}-1\right)< \left(\dfrac{x-3}{2001}-1\right)+\left(\dfrac{x-5}{1999}-1\right)\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}< \dfrac{x-2004}{2001}+\dfrac{x-2004}{1999}\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}-\dfrac{x-2004}{2001}-\dfrac{x-2004}{1999}< 0\\ \)

\(\Rightarrow\left(x-2004\right)\left(\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}\right)< 0\left(b\right)\)

Nhận thấy: \(\dfrac{1}{2002}< \dfrac{1}{2001},\dfrac{1}{2000}< \dfrac{1}{1999}\Rightarrow\dfrac{1}{2002}-\dfrac{1}{2001}< 0,\dfrac{1}{2000}-\dfrac{1}{1999}< 0\\ \Rightarrow\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}< 0\)

\(\left(b\right)\Rightarrow x-2004>0\Leftrightarrow x>2004\)

9 tháng 8 2024

\(a,\dfrac{x+2}{6}+\dfrac{x+5}{3}>\dfrac{x+3}{5}+\dfrac{x+6}{2}\\ < =>\left(\dfrac{x+2}{6}+1\right)+\left(\dfrac{x+5}{3}+1\right)>\left(\dfrac{x+3}{5}+1\right)+\left(\dfrac{x+6}{2}+1\right)\\ < =>\dfrac{x+8}{6}+\dfrac{x+8}{3}>\dfrac{x+8}{5}+\dfrac{x+8}{2}\\ < =>\dfrac{x+8}{5}+\dfrac{x+8}{2}-\dfrac{x+8}{6}-\dfrac{x+8}{2}< 0\\ < =>\left(x+8\right)\left(\dfrac{1}{5}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}\right)< 0\)

Mà: `1/5+1/2+1/6-1/3>0`

`=>x+8<0`

`<=>x<-8` 

\(\dfrac{x-2}{1007}+\dfrac{x-1}{1008}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\\ < =>\left(\dfrac{x-2}{1007}-1\right)+\left(\dfrac{x-1}{1008}-1\right)< \left(\dfrac{2x-1}{2017}-1\right)+\left(\dfrac{2x-3}{2015}-1\right)\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}-\dfrac{2\left(x-1009\right)}{2017}-\dfrac{2\left(x-1009\right)}{2015}< 0\\ < =>\left(x-1009\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{2}{2017}-\dfrac{2}{2015}\right)< 0\)

Mà: `1/1006+1/1008-2/2017-2/2015>0`

`=>x-1009<0`

`<=>x<1009`

9 tháng 8 2024

a/

Gọi x là số phút gọi thỏa mãn đề bài

\(32+\left(x-45\right).0,4=44+0,25x\)

\(\Leftrightarrow32+0,4x-18=44+0,25x\)

\(\Leftrightarrow0,15x=30\Rightarrow x=200\)

b/

+Nếu KH gọi 180 phút trong 1 tháng thì

Số tiền cho gói cước A là \(32+\left(180-45\right).0,4=86\) USD

Số tiền cho gói cước B là \(44+180.0,25=89\) USD

Trong trường hợp này chọn gói cước A có lợi hơn

+ Trường hợp KH gọi 500 phút thì

Số tiền cho gói cước A: \(32+\left(500-45\right).0,4=214\) USD

Số tiền cho gói cước B: \(44+500.0,25=169\) USD

Trong trường hợp này chọn gói cước B có lợi hơn

 

 

 

 

9 tháng 8 2024

a) Ta có:

`m^2>=0` với mọi m 

`=>m^2+1/2>=1/2>0` với mọi m 

`=>` Bất pt: `(m^2+1/2)x-1<=0` có hệ số `a≠0` 

`=>`Bất pt luôn là bất pt bậc nhất 1 ẩn với mọi m 

b) Ta có:

`m^2+m+2=(m^2+2*m*1/2+1/4)+7/4` 

`=(m+1/2)^2+7/4>=7/4>=0` với mọi m

`=>-(m^2+m+2)<=-7/2<0` với mọi m

`=>-(m^2+m+2)≠0` với mọi m 

=> Bất pt `-(m^2+m+2)x<=-m+2024` luôn là bpt bậc nhất 1 ẩn