K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2023

Gọi \(x,y,z,t\) lần lượt là số học sinh khối 6, 7, 8, 9.

Theo đề bài, ta có:

\(\left\{{}\begin{matrix}y+z+t=930\\x+z+t=980\\x+y+t=970\\x+y+z=960\end{matrix}\right.\)

Cộng theo vế cả 4 pt trên, thu được

\(3\left(x+y+z+t\right)=3840\)

\(\Leftrightarrow x+y+z+t=1280\)

Do đó \(x=1280-\left(y+z+t\right)=1280-930=350\)

\(y=1280-\left(x+z+t\right)=1280-980=300\)

\(z=1280-\left(x+y+t\right)=1280-970=310\)

\(t=1280-\left(x+y+z\right)=1280-960=320\)

DT
18 tháng 12 2023

loading... 

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Lời giải:
Để pt có 2 nghiệm thì: $\Delta'=1-k\geq 0\Leftrightarrow k\leq 1$
Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-2$

$x_1x_2=k$

$x_1,x_2\neq 0\Leftrightarrow x_1x_2\neq 0\Leftrightarrow k\neq 0$

Khi đó:

$\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{4}$

$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{4}$

$\Leftrightarrow \frac{-2}{k}=\frac{1}{4}\Leftrightarrow k=-8$ (tm)

18 tháng 12 2023

A:0 b:1 c:2 d:-2

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Lời giải:
a. Ta có:

$\widehat{BNC}=\widehat{BMC}=90^0$ (góc nt chắn nửa đường tròn - cung BC)

$\Rightarrow BN\perp AC, CM\perp AB$

Tam giác $ABC$ có 2 đường cao $BN, CM$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.

b. Gọi $D$ là giao của $AH$ và $BC$. Do $H$ là trực tâm tam giác $ABC$ nên $AH\perp BC$ tại $D$.

Tam giác $BMC$ vuông tại $M$

$\Rightarrow$ trung tuyến $MO= \frac{BC}{2}=BO$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow BOM$ là tam giác cân tại $O$

$\Rightarrow \widehat{OMB}=\widehat{OBM}=90^0-\widehat{BCM}$

$=90^0-\widehat{DCH}=\widehat{MHA}=\widehat{MHE}(1)$

$CM\perp AB$ nên $AMH$ là tam giác vuông tại $M$

$\Rightarrow ME=\frac{AH}{2}=EH$ (đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)

$\Rightarrow MEH$ cân tại $E$

$\Rightarrow \widehat{MHE}=\widehat{EMH}(2)$

Từ $(1); (2)\Rightarrow \widehat{OMB}=\widehat{EMH}$

$\Rightarrow \widehat{OMB}+\widehat{OMC}=\widehat{EMH}+\widehat{OMC}$

$\Rightarrow \widehat{BMC}=\widehat{EMO}$

$\Rightarrow \widehat{EMO}=90^0$

$\Rightarrow EM\perp MO$ nên $EM$ là tiếp tuyến $(O)$
c.

Ta có:

$EM=\frac{AH}{2}=EN$

$OM=ON$

$\Rightarrow EO$ là trung trực của $MN$

Gọi $T$ là giao điểm $EO, MN$ thì $EO\perp MN$ tại $T$ và $T$ là trung điểm $MN$.

Xét tam giác $EMO$ vuông tại $M$ có $MT\perp EO$ thì:

$ME.MO = MT.EO = \frac{MN}{2}.EO$

$\Rightarrow 2ME.MO = MN.EO$

 

 

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Hình vẽ: