cho tam giác ABC có góc BAC =50 độ, góc ACB =70 độ. lấy điểm I nằm trong tam giác ABC sao cho góc IBC =30 độ, góc ICB =35 độ.
a) tính số đo góc ABC; b) chứng minh rằng các tia BI, CI lần lượt là tia phân giác của góc ABC, ACB; c) gọi D, E, F lần lượt là hình chiếu vuông góc của điểm I trên các đường thẳng BC, CA, AB. Chứng minh rằng I là giao điểm của 3 đường trung trực của tam giác DEF
vẽ hình hộ mình nha
a: Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ABC}+50^0+70^0=180^0\)
=>\(\widehat{ABC}=60^0\)
b: Trên cùng một nửa mặt phẳng bờ chứa tia BC, ta có: \(\widehat{CBI}< \widehat{CBA}\left(30^0< 60^0\right)\)
nên tia BI nằm giữa hai tia BC và BA
Ta có: tia BI nằm giữa hai tia BC và BA
mà \(\widehat{CBI}=\dfrac{1}{2}\cdot\widehat{CBA}\)
nên BI là phân giác của góc ABC
Trên cùng một nửa mặt phẳng bờ chứa tia CB, ta có: \(\widehat{BCI}< \widehat{BCA}\)
nên tia CI nằm giữa hai tia CB và CA
Ta có: tia CI nằm giữa hai tia CB và CA
mà \(\widehat{BCI}=\dfrac{1}{2}\cdot\widehat{BCA}\)
nên CI là phân giác của góc BCA
c: Xét ΔBFI vuông tại F và ΔBDI vuông tại D có
BI chung
\(\widehat{FBI}=\widehat{DBI}\)
Do đó: ΔBFI=ΔBDI
=>IF=ID
Xét ΔCDI vuông tại D và ΔCEI vuông tại E có
CI chung
\(\widehat{DCI}=\widehat{ECI}\)
Do đó: ΔCDI=ΔCEI
=>ID=IE
=>ID=IE=IF
=>I là giao điểm của 3 đường trung trực của ΔDEF