7b) Chứng minh rằng tổng A chia hết cho 400 ( n thuộc N )
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: (a+b)/3 = (b+c)/4 =>4a+4b=3b+3c=>4a+b-3c=0 (1)
ta có : (b+c)/3=(c+a)/5=> 5b+5c=4c+4a => 4a-5b-c=0=> 4a= 5b+c (2)
ta có: (c+a)/5=(a+b)/3 => 5a+5b= 3c+3a => 2a+5b-3c=0 => 3c=2a+5b (3)
THay (2) vào (1) ta dc:c = 3b
tay (3) vao (1) ta đc: a = 2b
M= 8a-b-5c+2016=8.2b-b-5.3b+2016=2016. HẾT
Do ABD và ACE đều nên góc A1 = góc A3 = 600
\(\Rightarrow A_1+A_2=A_3+A_2\)
\(\Rightarrow DAC=BAE\)
Do đó: \(\Delta DAC=\Delta BAE\) (c.g.c)
Suy ra: góc D1 = góc B1
Xét \(\Delta DNA\) và \(\Delta BNM\) có:
+ Góc D1 = góc B1(CM trên)
+ Góc N1 = góc N2 (đối đỉnh)
Suy ra góc A1 = góc M1 = 600
Góc M2 kề bù với M1 nên M2 + M1 = 1800
Suy ra góc M1 = 1200 (đpcm)
sai rùi !
người ta bảo chứng minh góc BMC=120 độ chứ có phải BMD đâu
Câu hỏi này là bài T1/487 toán tuổi trẻ . Kết quả p=2 và q=7 . Bạn k mk nhé
Tổng hệ số sau khi thu gọn là giá trị của g(x) khi x = 1
Vậy ta có tổng hệ số là:
\(g\left(1\right)=\left(8-6+14\right)^{15}=16^{15}\)
a) Ta có \(\widehat{B}+\widehat{C}=90^o\) mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2};\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\) nên \(\widehat{B_2}+\widehat{C_2}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^o}{2}=45^o\)
Xét tam giác BOC, có \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\Rightarrow\widehat{BOC}=180^o-45^o=135^o\)
b) Xét tam giác BAD và BMD có:
Cạnh BD chung
\(\widehat{B_1}=\widehat{B_2}\)
AB = MB (gt)
\(\Rightarrow\Delta BAD=\Delta BMD\left(c-g-c\right)\)
\(\Rightarrow\widehat{BMD}=\widehat{BAD}=90^o\)
Hoàn toàn tương tự \(\Delta EAC=\Delta ENC\left(c-g-c\right)\Rightarrow\widehat{ENC}=\widehat{EAC}=90^o\)
Ta có EN và DM cùng vuông góc với BC nên EN // DM
c) Theo câu b, \(\Delta BAD=\Delta BMD\Rightarrow AD=MD;\widehat{BDA}=\widehat{BDM}\)
Từ đó ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow OA=OM.\)
Tương tự : \(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow OA=ON.\)
Vậy nên OA = OM = ON
d) Ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow\widehat{OAD}=\widehat{OMD}\)
\(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow\widehat{OAE}=\widehat{ONE}\)
\(\Rightarrow\widehat{ONE}+\widehat{OMD}=\widehat{OAE}+\widehat{OAD}=\widehat{EAD}=90^o\)
\(\Rightarrow\widehat{NOM}=90^o\) (Dạng bài qua O kẻ đường thẳng song song với EN và DM)
Vậy tam giác OMN vuông cân hay \(\widehat{ONM}+\widehat{OMN}=90^o\)
Xét tam giác AMN có \(\widehat{MAN}+\widehat{ANM}+\widehat{AMN}=180^o\)
\(\Leftrightarrow\widehat{MAN}+\widehat{ANO}+\widehat{ONM}+\widehat{AMO}+\widehat{OMN}=180^o\)
\(\Leftrightarrow\widehat{MAN}+\widehat{NAO}+\widehat{MAO}=180^o-90^o=90^o\)
\(\Leftrightarrow\widehat{2MAN}=90^o\)
\(\Leftrightarrow\widehat{MAN}=45^o\)
ko ai giúp bn mon nguyễn à mình cũng đang khó đây
Mon nguyễn đcj chữa bài chưa viét bài giải lên đi
Từ điểm O bất kì trong mặt phẳng, vẽ 6 đường thẳng song song với 6 đường thẳng đã cho
6 đường thẳng này tạo thành 12 góc đội một đối đỉnh không có điểm chung có tổng là 360 độ
Mỗi góc có số đo bằng với số đo của góc nhọn tạo bởi 2 trong 6 đường thẳng đã cho
Nếu trong 12 góc ấy không có góc nào lớn hơn 30 độ thì tổng của chúng nhỏ hơn 360 độ
Nếu trong 12 góc ấy không có góc nào nhỏ hơn 30 độ thì tổng của chúng lớn hơn 360 độ
Vậy tồn tại một trong 12 góc ấy có số đo không lớn hơn 30 độ và 1 góc có số đo không nhỏ hơn 30 độ => đpcm
Ta có : \(P\left(0\right)=a_0=2^{10}\)
\(P\left(1\right)=a_0+a_1+a_2+...+a_{30}=\left(2+1+3\right)^{10}=6^{10}\)
Suy ra : \(S=a_1+a_2+...+a_{30}=P\left(1\right)-P\left(0\right)=6^{10}-2^{10}\)
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7+...+7^{4n-3}\right)⋮400\forall n\in N\)