K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)

BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)

Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành: 

Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)

Lời giải:

 Áp dụng BĐT Cauchy -Schwarz:

\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)

Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\) 

Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev: 

\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)

\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)

Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)

\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)

Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)

Ta có đpcm

Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)

5 tháng 5 2020

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:

\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)

Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)

Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)

\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cộng theo vế của 3 BĐT trên, ta được: 

\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)

Cuối cùng ta cần chứng minh được

\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)

10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=

DD
9 tháng 11 2020

Xét tam giác \(ABC\)vuông tại \(A\)\(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}\).

                                                          \(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}\)

Suy ra \(\frac{HB}{HC}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2=\frac{9}{25}\)

31 tháng 8 2019

Bài này dễ mà bn lớp 5 còn làm đc :) e xin lỗi tí chứ e hc bài này òi :)

Vì khúc gỗ trôi tự do với vận tốc dòng nưosc là 2 giờ 15 phút 

Ta có :

=>gọi x là v thật của cano như vậy ta có: (x#0) thì vận tốc cano lúc đi là sẽ là x+4va v sẽ là x - 4 

T/g canô là (x#0) 40 /(x#4)

T/g cano AB là: 10/(x#)

Ta có p.t:

40/(x+10) + 2,25 = 32,25 (km)

Chú ý đổi xong òi đó 2 giờ 15 phút 

Đ.s:....................

>3

10 tháng 11 2020

1)

\(y=x-\sqrt{x-1991}=\left(\sqrt{x-1991}-\frac{1}{2}\right)^2+\frac{7963}{4}\ge\frac{7963}{4}\)

Dấu "=" xảy ra khi \(x=\frac{7965}{4}\)

10 tháng 11 2020

2)

\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=\frac{\left(a+2b\right)^2}{a^2+b^2}+1\ge1\)

Dấu "=" xảy ra khi a=-2b

\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=-\frac{\left(2a-b\right)^2}{a^2+b^2}+6\le6\)

Dấu "=" xảy ra khi 2a=b

NM
7 tháng 11 2020

từ giả thiết \(\Rightarrow3xy=x+y+1\)

áp dụng bất đẳng thức Bunia ta có

\(3x^2+1\ge\frac{\left(3x+1\right)^2}{4}\Rightarrow\sqrt{3x^2+1}\ge\frac{\left(3x+1\right)}{2}\)

tương tự \(\Rightarrow\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3x+1}+\frac{2}{3y+1}\)

Mà \(\frac{2}{3x+1}+\frac{2}{3y+1}=\frac{6x+6y+4}{9xy+3x+3y+1}=\frac{6x+6y+4}{6x+6y+4}=1\)(Thế \(3xy=x+y+1\))

từ đây ta có dpcm

8 tháng 11 2020

Ta có: \(\left(x+1\right)\left(y+1\right)=4xy\Rightarrow xy+x+y+1=4xy\Rightarrow3xy=x+y+1\)

Xét bất đẳng thức phụ \(3x^2+1\ge\frac{\left(3x+1\right)^2}{4}\)(*)

Thật vậy: (*)\(\Leftrightarrow12x^2+4-9x^2-6x-1\ge0\Leftrightarrow3x^2-6x+3\ge0\Leftrightarrow3\left(x-1\right)^2\ge0\)*đúng*

Do đó \(\sqrt{3x^2+1}\ge\frac{3x+1}{2}\Rightarrow\frac{1}{\sqrt{3x^2+1}}\le\frac{2}{3x+1}\)(1)

Tương tự, ta có: \(\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3y+1}\)(2)

Cộng theo vế hai bất đẳng thức (1) và (2), ta được: \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3x+1}+\frac{2}{3y+1}=\frac{6x+6y+4}{9xy+3x+3y+1}=\frac{6x+6y+4}{3\left(x+y+1\right)+3x+3y+1}=\frac{6x+6y+4}{6x+6y+4}=1\)Đẳng thức xảy ra khi x = y = 1

15 tháng 6 2016

Bài 1

Từ giả thiết, bình phương 2 vế, ta được:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)

\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)

\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)

\(=2014\)

\(\Rightarrow A=\sqrt{2014}.\)

Bài 2:

Đặt \(\sqrt{2015}=a>0\)

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)

Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)

\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)

\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)

Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)

Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

Bài 3

Áp dụng bất đẳng thức Côsi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)

Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)

15 tháng 6 2016

Em mới hoc lớp 7

6 tháng 11 2020

ĐKXĐ : \(x\ge0;x\ne1\)

a ) \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{2\sqrt{x}}\)

\(A=\frac{1+\sqrt{x}+1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}:\frac{1+\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{1}{2\sqrt{x}}\)

\(A=\frac{2}{2\sqrt{x}}+\frac{1}{2\sqrt{x}}=\frac{3}{2\sqrt{x}}\)

b) \(x=6-2\sqrt{5}\Leftrightarrow x=5-2\sqrt{5}+1\Leftrightarrow x=\left(\sqrt{5}-1\right)^2\) ( Thỏa mãn ĐKXĐ )

Vậy tại \(x=\left(\sqrt{5}-1\right)^2\)thì giá trị biểu thức A là : 

\(A=\frac{3}{2\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{3}{2\left(\sqrt{5}-1\right)}=\frac{3\left(\sqrt{5}+1\right)}{2.4}=\frac{3\sqrt{5}+3}{8}\)

6 tháng 11 2020

a) \(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)

\(=\frac{\left(\sqrt{a}+3\right)\left(-a+4\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(-a+4\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}-1\right)\left(-a+4\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(-a+4\right)\left(\sqrt{a}-2\right)}+\frac{\left(4\sqrt{a}-4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(4-a\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{-4a\sqrt{a}-8a+16\sqrt{a}+32}{\left(-a+4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{4\left(2+\sqrt{a}\right)\left(-a+4\right)}{\left(-a+4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{4\left(\sqrt{a}+2\right)}{a-4}\)

b) Với a = 9 thì

\(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)

\(=\frac{\sqrt{9}+3}{\sqrt{9}-2}-\frac{\sqrt{9}-1}{\sqrt{9}+2}+\frac{4\sqrt{9}-4}{4-9}\)

\(=\frac{3+3}{3-2}-\frac{3-1}{3+2}+\frac{4\cdot3-4}{-5}\)

\(=6-\frac{2}{5}+\frac{12-4}{-5}\)

\(=6-\frac{2}{5}+\frac{8}{-5}\)

\(=6-\frac{2}{5}+\frac{-8}{5}\)

\(=\frac{30}{5}-\frac{2}{5}-\frac{8}{5}\)

\(=\frac{20}{5}=4\)

6 tháng 11 2020

ĐKXĐ : a khác 4 ; \(a\ge0\)

a) Làm như bạn kia

b) +) x = 9 ( thoản mãn ĐKXĐ )

Vậy tại x = 9 thì giá trị biể thức P là :

\(P=\frac{4\left(\sqrt{9}+2\right)}{9-4}=\frac{4\left(3+2\right)}{5}=4\)