Cho a, b, c > 0; a+b+c=1
Tìm min A = \(a^2+b^2+c^2+2\sqrt{3abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15.
Ta có \(a+b+c+ab+bc+ac=6\)
Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)
=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)
=> \(a+b+c\ge3\)
\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)
Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành
\(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)
Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)
Tóm lại bđt được chứng minh
Dấu "=": tại a=b=c
a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)
Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)
Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)
\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)
Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100) mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)
b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
Ta có:
\(n\left(5n-2\right)-5n\left(n+3\right)\)
\(=n\left(5n-2\right)-n\left(5n+3\right)\)|
\(=n\left(5n-2-5n-3\right)=-5n\) ; Vì \(n\in Z\)
\(\Rightarrow-5n\in Z\Rightarrow
-5n⋮-5\)
Vậy: .......
#HọcTốt!!
7/ Em sửa lại đề ạ
Cho hai số thực dương a, b thỏa mãn a+b=4ab
Chứng minh rằng \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)
Từ giả thiết => x+y=4
Ta có: BĐT cần CM tương đương với:
\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)
Áp dụng BĐT Schwarz, ta có:
∑\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)
Ta chỉ cần chứng minh:
\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)
\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)
Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)
6. (chuyên Hòa Bình)
Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32
Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)
Áp dụng bất đẳng thức Cauchy cho ba số dương x,y,z ta có
\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)
Cộng từng vế của ba bđt trên ta có
\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)
Không mất tính tổng quát giả sử: \(\left(b-a\right)\left(b-c\right)\le0\)
\(\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+a^2c+bc^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2\) (Vì\(a,b,c\ge0\) )
\(\Leftrightarrow ab^2+bc^2+ca^2\le b\left(a+c\right)^2=\frac{1}{2}.2b\left(a+c\right)\left(a+c\right)\le\frac{4\left(a+b+c\right)^3}{27}=4\)Vì a+b+c=3
Áp dụng bđt Cô si cho 2 số không âm, ta có:
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{a\left(b^2+2\right)}{2}=\frac{ab^2}{2}+a\)
Tương tự với 2 số còn lại rồi cọng lại, ta có;
\(P\le\frac{ab^2+bc^2+ca^2}{2}+a+b+c\le\frac{4}{2}+3=5\)
Dấu bằng xảy ra khi a=0, b=1, c=2 và các hoán vị
(Hơi lười ghi một chút thông cảm)
Thế nếu câu này tìm min thì làm kiểu gì ạ câu này min=3 nhưng em chưa biết làm
Em mới tìm được Min thôi ạ, Max =\(2\sqrt{2}+4\)nhưng chưa biết cách giải , mọi người giúp với ạ
áp dụng bất đẳng thức AM-GM cho 3 số ta có:
\(a^3+b^3+1\ge3\sqrt[3]{a^3b^3.1}=3ab\)
\(\Rightarrow M=\frac{a^3+b^3+4}{ab+1}=\frac{\left(a^3+b^3+1\right)+3}{ab+1}\ge\frac{3ab+3}{ab+1}=3\)
Vậy giá trị nhỏ nhất của M=3 khi \(\hept{\begin{cases}a^2+b^2=2\\a^3=b^3=1\end{cases}\Rightarrow}a=b=1\)
\(0\le a\le\sqrt{2}\Rightarrow a\left(a-\sqrt{2}\right)\le0\Rightarrow a^2\le a\sqrt{2}\Rightarrow a^3\le a^2\sqrt{2}\)
Tương tự và cộng lại: \(a^3+b^3\le\sqrt{2}\left(a^2+b^2\right)=2\sqrt{2}\)
\(\Rightarrow M\le\frac{2\sqrt{2}+4}{ab+1}\le\frac{2\sqrt{2}+4}{1}=2\sqrt{2}+4\) (do \(ab\ge0\Rightarrow ab+1\ge1\))
Dấu "=" khi \(\left(a;b\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)
\(P=xy\left(x-2\right)\left(y+6\right)+13x^2+4y^2-26x+24y+46.\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+13\left(x^2-2x\right)+4\left(y^2+6y\right)+46\)
\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+4\left(y^2+6y\right)\right]+13\left(x^2-2x+4\right)-6\)
\(=\left(x^2-2x+4\right)\left(y^2+6y\right)+13\left(x^2-2x+4\right)-6\)
\(=\left(x^2-2x+4\right)\left(y^2+6y+13\right)-6\)
\(=\left[\left(x-1\right)^2+3\right]\left[\left(y+3\right)^2+4\right]-6\)
Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+3\ge3\)
\(\left(y+3\right)^2\ge0\forall y\Rightarrow\left(y+3\right)^2+4\ge4\)
Suy ra \(P=\left[\left(x-1\right)^2+3\right]\left[\left(y+3\right)^2+4\right]-6\ge3.4-6=6\)
Vậy giá trị nhỏ nhất của P=6 \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-3\end{cases}.}\)
Câu này tương tự với câu có link bên dưới phải không ạ?
https://olm.vn/hoi-dap/detail/223114327893.html
Ta có:
\(P=xy\left(x-2\right)\left(y+6\right)+13x^2+4y^2-26x+24y+46\)
\(=\left[x\left(x-2\right)\right]\left[y\left(y+6\right)\right]+\left(13x^2-26x\right)+\left(4y^2+24y\right)+46\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+13\left(x^2-2x\right)+4\left(y^2+6y\right)+46\)
\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+13\left[\left(x-1\right)^2-1\right]\)
\(+4\left[\left(y+3\right)^2-9\right]+46\)
Đặt \(x-1=u;y+3=v\)
Khi đó \(P=\left(u^2-1\right)\left(v^2-9\right)+13\left(u^2-1\right)+4\left(v^2-9\right)+46\)
\(=u^2v^2-v^2-9u^2+9+13u^2-13+4v^2-36+46\)
\(=u^2v^2+4u^2+3v^2+6\ge6\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}u=0\\v=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Dự đoán xảy ra cực trị khi a = b = c =2. Khi đó P =\(\frac{3\sqrt{2}}{4}\). Ta sẽ chứng minh đó là MAX của P
Ta có: \(\left(\frac{a+b+c}{3}\right)^3-\left(a+b+c\right)\ge abc-\left(a+b+c\right)=2\)
Đặt a + b +c = t>0 suy ra \(\frac{t^3-27t}{27}\ge2\Leftrightarrow t^3-27t\ge54\Leftrightarrow t^3-27t-54\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}t\ge6\\t=-3\left(L\right)\end{cases}}\). Do vậy \(t\ge6\) (em làm tắt xiu nhé,dài quá)
\(P=\Sigma_{cyc}\frac{2}{\sqrt{2}.\sqrt{2\left(a^2+b^2\right)}}\le\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Giờ đi chứng minh \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{3}{4}\)
Em cần suy ra nghĩ tiếp:(
min của \(A=a^2+b^2+c^2-2\sqrt{3abc}\) chứ nhỉ
à nhầm