Cho a,b,c là các số thực không âm thỏa \(a+b+c=3\). Tìm GTLN của \(P=a^4+b^4+c^4-3abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P^2=a+b+c+a^2+b^2+c^2+2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}+2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}+2\sqrt{\left(a+b^2\right)\left(c+a^2\right)}.\)
Theo bđt Bunhiacopski ta có
\(2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}\ge2\sqrt{b^3}\)(vì \(a,c\ge0\))
Tương tự \(2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}\ge2\sqrt{c^3}\)
\(2\sqrt{\left(c+a^2\right)\left(a+b^2\right)}\ge2\sqrt{a^3}\)
\(\Rightarrow P^2\ge a+b+c+a^2+b^2+c^2+2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\)
Theo gt : \(\hept{\begin{cases}a,b,c\ge0\\a^2+b^2+c^2=1\end{cases}\Rightarrow0\le a,b,c\le1}\)
\(\Rightarrow\hept{\begin{cases}a\ge a^2,b\ge b^2,c\ge c^2\\a^3\ge a^4,b^3\ge b^4,c^3\ge c^4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b+c\ge a^2+b^2+c^2=1\\2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\ge2\left(a^2+b^2+c^2\right)=2\end{cases}}\)
\(\Rightarrow P^2\ge1+1+2=4\)\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi a=b=0,c=1 và các hoán vị của nó
Tìm Max
Theo bđt Bunhiacopski ta có
\(P^2\le\left(1+1+1\right)\left(a+b+c+a^2+b^2+c^2\right)\)
\(=3\left(a+b+c+a^2+b^2+c^2\right)\)\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\right)\)
\(=3\left(1+\sqrt{3}\right)\)
\(\Rightarrow P\le\sqrt{3\left(1+\sqrt{3}\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))
Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)
Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng từng vế của các BĐT trên,ta được:
\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
We have:
\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)
Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)
Consider:
\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)
\(\Rightarrow a+b+c\le\frac{3}{2}\)
Now we need to prove:
\(\Sigma_{cyc}\frac{a}{a+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)
\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)
Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)
Ta có: \(\frac{2x-4y}{39}=\frac{4z-3x}{26}=\frac{3y-2z}{52}\)
\(\Rightarrow\frac{39\left(2x-4y\right)}{39.39}=\frac{26\left(4z-3x\right)}{26.26}=\frac{52\left(3y-2z\right)}{52.52}\)
\(\Rightarrow\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}=\frac{78x-156y+104z-78x+156y-104z}{1521+676+2704}=\frac{0}{4901}=0\)
Do đó: \(\hept{\begin{cases}\frac{2x-4y}{39}=0\\\frac{4z-3x}{26}=0\\\frac{3y-2z}{52}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-4y=0\\4z-3x=0\\3y-2z=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=4y\\4z=3x\\3y=2z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{2}\\\frac{z}{3}=\frac{x}{4}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=3k\end{cases}}\)
Ta có: \(A=2018-2x-11y+10z=2018-2.4k-11.2k+10.3k=2018-8k-22k+30k\)
\(A=2018-\left(8k+22k-30k\right)=2018-0=2018\)
Xét hiệu \(S_1-S_2=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}\)
\(=\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{\left(b-c\right)\left(b+c\right)}{b+c}+\frac{\left(c-a\right)\left(c+a\right)}{c+a}\)
\(=a-b+b-c+c-a\)
\(=0\)
\(\Rightarrow S_1=S_2\)
+) Áp dụng bđt AM-GM ta có:
\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{b^2}{b+c}.\frac{b+c}{4}}=b\)
\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{c^2}{c+a}.\frac{c+a}{4}}=c\)
Cộng theo vế các đẳng thức trên ta được:
\(S_1+\frac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow S_1\ge\frac{a+b+c}{2}\left(đpcm\right)\)
\(VT=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)
\(=3-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\)
Áp dụng BCS:
\(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
\(\frac{bc^2}{c^2+1}\le\frac{bc^2}{2c}=\frac{bc}{2}\)
\(\frac{ca^2}{a^2+1}\le\frac{ca^2}{2a}=\frac{ca}{2}\)
\(\Rightarrow3-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\ge3-\frac{ab+bc+ca}{2}\)
Ta có BĐT phụ:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le3\)(vì a+b+c=3)
\(\Rightarrow\frac{ab+bc+ca}{2}\le\frac{3}{2}\)
\(\Rightarrow3-\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)
Vậy \(VT=a-\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
a) Xét\(\Delta OAM\)và \(\Delta OAN\)có:
\(\hept{\begin{cases}OA:chung\\gócAOM=gócAON\\gócOAM=gócOAN\left(=90^0\right)\end{cases}}\)
\(\Rightarrow\Delta OAM=\Delta OAN\left(ch-gn\right)\)
\(\Rightarrow OM=ON\left(đpcm\right)\)
b) Xét \(\Delta OEM\)và \(\Delta OEN\)có:
\(\hept{\begin{cases}OE:chung\\gócMOE=gócNOE\\OM=ON\end{cases}}\)
\(\Rightarrow\Delta OEM=\Delta OEN\left(c.g.c\right)\)
\(\Rightarrow gócOEM=gócOEN\left(đpcm\right)\)
Giải:
Để số cây trồng là ít nhất thì khoảng cách giữa các cây là lớn nhất. Khoảng cách giữa các cây là ước chung của 105 và 75, vậy khoảng cách giữa cách cây là ước chung lớn nhất của 105 và 75
105 = 3.5.7
75 = 3.52
ƯCLN(105; 75) = 3.5 = 15
Khi đó cần trồng ít nhất số cây là:
(105 + 75) x 2 : 15 = 24 (cây)
Kết luận:...
92 - x = 45 - 16
92 - x = 29
x = 92 - 29
x = 63
bn giải đúng rùi mà
Cách giải nè:
92 - x = 45 - 16
92 - x = 29
x = 92 - 29
x = 63
Mik đoán chắc cậu viết 29.x nên cô bảo sai đó
Dự đoán Max P = 81 nên ta chứng minh: \(P\le81=\left(a+b+c\right)^4\)
Ta có: \(P=a^4+b^4+c^4-3abc\le a^4+b^4+c^4+78abc\)
\(=a^4+b^4+c^4+26\left(a+b+c\right)abc\)
Vậy ta chứng minh: \(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)
SOS là ra rồi :DD
Chứng minh:\(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)
Giả sử \(a=max\left\{a,b,c\right\}\).Xét hiệu:
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị.