Cho a,b,c thực dương thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\)
CMR: \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d):
x2 + 2x -m2 + 1 = 0
Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0
Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)m \(\in\varnothing\)
Ta có: \(x^2+4y=8\)
<=> \(y=\frac{8-x^2}{4}\)
\(P=x+y+\frac{9}{x+y}+\frac{1}{x+y}\)
\(=\left(x+y+\frac{9}{x+y}\right)+\frac{1}{x+\frac{8-x^2}{4}}\)
\(\ge2\sqrt{\left(x+y\right).\frac{9}{x+y}}+\frac{4}{-x^2+4x+8}\)
\(=2.3+\frac{4}{-\left(x^2-4x+4\right)+12}=6+\frac{4}{-\left(x-2\right)^2+12}\)
\(\ge6+\frac{4}{12}=\frac{19}{3}\)
Dấu "=" xảy ra <=> x = 2; y =1
Có: \(x^5+y^2=xy^2+1\)
<=> \(x^5-1=y^2\left(x-1\right)\)(1)
TH1: x = 1
=> \(1^2+y^2=1.y^2+1\) đúng với mọi y
TH2: \(x\ne1\)
(1) <=> \(y^2=x^4+x^3+x^2+x+1\)
<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)
Có:
+) \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)
\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)
=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)
+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)
=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)
<=> x = 0
=> \(y=\pm1\)
TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)
<=> \(2x+3-x^2=0\)
<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Với x = -1 => \(y=\pm1\)
Với x = 3 => \(y=\pm11\)
Kết luận:...
Giả sử tồn tại các số nguyên x,y thảo mãn \(x^4+y^3+4=0\) \(\left(1\right)\)
Ta có: \(\left(1\right)\) \(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x+2\right)=-y^3\)
Trước tiên ta nhận xét rằng x phải là một số lẻ, bởi ngược lại nếu x là một số chẵn thì \(x^4+4=-y^3\) là lập phương của một số chẵn, nhưng \(x^4+4\) không chia hết cho 8 với mọi số nguyên x ( vô lí ).
Vậy x là một số lẻ, suy ra y cũng là một số lẻ.
Đặt \(d=\left(x^2-2x+2,x^2+2x+2\right)\)
Ta có: \(4x=\left[\left(x^2+2x+2\right)-\left(x^2-2x+2\right)\right]⋮d\)
Mặt khác d là số lẻ ( vì \(-y^3⋮d\) và y là số lẻ ), dẫn đến \(\left(4,d\right)=1\) và do đó \(x⋮d\)
Suy ra \(2⋮d\) nên \(d=1\) ( vì d lẻ )
Tóm lại, hai số nguyên \(x^2-2x+2\) và \(x^2+2x+2\) là hai số nguyên tố cùng nhau, có tích là lập phương của một số nguyên nên mỗi số là lập phương của một số nguyên.
Đặt:
\(x^2-2x+2=a^3,x^2+2x+2=b^3\) với \(a,b\inℤ\)
Suy ra \(\left(x-1\right)^2=\left(a-1\right)\left(a^2+a+1\right)\)
\(\left(x+1\right)^2=b^3-1=\left(b-1\right)\left(b^2+b+1\right)\)
Do đó: \(a-1\ge0,b-1\ge0\)
Gọi \(d_1\) là ước chung lớn nhất của \(a-1\) và \(a^2+a=1\) thì \(3a=\left[\left(a^2+a+1\right)-\left(a-1\right)^2\right]⋮d_1\)
Mà \(\left(a,d_1\right)=1\) ( vì \(d_1\) là ước của \(a-1\) ) nên \(3⋮d_1\) )
Do đó: \(d_1\in\left\{1;3\right\}\)
Tương tự gọi \(d_2\) là ước chung lớn nhất của \(b-1\) và \(b^2+b+1\) thì \(d_2\in\left\{1;3\right\}\)
Chú ý rằng nếu \(d_1=d_2=3\) thì \(\left(x-1\right)^2\) và \(\left(x+1\right)^2\) đều chia hết cho 3
Suy ra \(2=\left(x+1\right)-\left(x-1\right)\) chia hết cho 3 ( vô lí )
Vì vậy trong hai số \(d_1,d_2\) phải có một số bằng 1
+ Nếu \(d_1=1\) thì khi đó \(a-1\) và \(a^2+a+1\) là hai số nguyên tố cùng nhau có tích là một số chính phương nên cả 2 số đó đồng thời là số chính phương.
Đặt \(a^2+a+1=m^2\) thì
\(4m^2=4\left(a^2+a=1\right)=\left(2a+1\right)^2+3\)
Do đó \(\left(2m-2a-1\right)\left(2m+2a+1\right)=3\)
TH1: \(2m-2a-1=1,2m+2a+1=3\) thì \(a=0\) ( vô lí vì phương trình \(x^2-2x+2\) không cs nghiệm nguyên )
TH2: \(2m-2a-1=3,2m+2a+1=1\) thì \(a=-1\) ( vô lí vì phương trình \(x^2-2x+2=-1\) không cs nghiệm nguyên )
+ Nếu \(d_2=1\) làm tương tự ta không tìm đc x,y thỏa mãn.
Vậy không tồn tại các số nguyên x,y thỏa mãn đề bài.
a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE
Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều )
^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE
CA = AE ( \(\Delta\)CAE đều )
Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)
=> ^ABE = ^ADC (2)
+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )
^KDA = ^KBI( theo ( 2) )
mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)
=> ^KIB = ^KAD = ^BAD= 60\(^o\)
=> ^DIB = 60\(^o\)
b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE
=> DM = BN (3)
+) Xét \(\Delta\)BAN và \(\Delta\)DAM
có: BN = DM ( theo (3)
^ABN = ^ADM ( theo (2)
AB = AD ( \(\Delta\)ADB đều )
=> \(\Delta\)BAN = \(\Delta\)DAM (4)
=> AN = AM => \(\Delta\)AMN cân tại A (5)
+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM
=> ^MAN = ^DAB = 60\(^o\)(6)
Từ (5); (6) => \(\Delta\)AMN đều
c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I
mà ^BIF = ^BID = 60\(^{\text{}o}\)( theo (a))
=> \(\Delta\)FIB đều (7)
=> ^DBA = ^FBI( =60\(^o\))
=> ^DBF + ^FBA = ^FBA + ^ABI
=> ^DBF = ^ABI
Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )
Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB => ^AIB = ^DFB = 180\(\text{}^o\)- ^BFI = 180\(\text{}^o\)-60\(\text{}^o\)=120\(\text{}^o\)
+) Mặt khác ^BID = 60 \(\text{}^o\)( theo (a) )
=> ^DIE = 180\(\text{}^o\)- ^BID = 120 \(\text{}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{}^o\)-60\(\text{}^o\)=60\(\text{}^o\)
=> ^AIE = ^DIE - ^DIA = 120\(\text{}^o\)-60\(\text{}^o\)=60\(\text{}^o\)
=> ^DIA = ^AIE ( = 60\(\text{}^o\))
=> IA là phân giác ^DIE.
bạn có thể giải giúp được kg, tôi đọc nhưng kg hiểu, đề trên Voilympic lop 5. cảm ơn nhiều
Ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=2019\)
\(\Rightarrow\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)
\(=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\)\(\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(cô -si)
\(\Rightarrow\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}\)\(=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta có: \(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
và \(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Cộng từng vế của các bđt trên, ta được:
\(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019.3\left(xy+yz+zx\right)}{2019xyz}\)
\(\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020.2019xyz\)
Vậy \(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le2019.2020xyz\left(đpcm\right)\)
Theo bài ra ta có:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}=\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(Theo BĐT Cosi)
\(\Rightarrow\frac{x^2+1+\sqrt{2019^2+1}}{x}\le\frac{x+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự:
\(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow VT\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019\cdot3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}\)\(=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020\cdot2019xyz=VP\)
=> ĐPCM
TL :
Do số cần tìm chia 25 dư 1 và là số chẵn
Nên số cần tìm có 2 chữ số cuối cùng là 26 và 76
Ta sẽ loại bỏ trường hợp số cần tìm có 2 chữ số cuối cùng là 26 vì khi đó thì tổng 2 chữ số còn lại của số cần tìm là : 30 - ( 2 + 6 ) = 22 ( không đúng )
Vậy thì ta phải lấy trường hợp số cần tìm có chữ số cuối cùng là 76
Tổng 2 chữ số còn lại :
30 - ( 7 + 6 ) = 17 = 8 + 9
Vì số cần tìm là số chẵn lớn nhất
Nên số cần tìm sẽ là 9876
Mik không biết làm sai hay đúng ạ . Đó là ý kiến của mình .
# Hok tốt
# Trâm
Ta sẽ chứng minh: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với x,y > 0.
Thật vậy: \(x+y+z\ge3\sqrt[3]{xyz}\)(bđt Cô -si)
và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\)(bđt Cô -si)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(Dấu "="\(\Leftrightarrow x=y=z\))
Ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
(Dấu "=" xảy ra khi a = b)
Tương tự ta có:\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)(Dấu "=" xảy ra khi b=c)
\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)(Dấu "=" xảy ra khi c=a)
\(VT=\text{Σ}_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
(Dấu "=" xảy ra khi \(a=b=c=\frac{3}{2}\))
Ô, thanh you, bạn 2k7 sao mà giỏi thế