K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

\(-4:\frac{1}{3}\left(\frac{1}{2}-\frac{1}{6}\right)< n< \frac{-2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)

\(\Rightarrow-4\cdot3\left(\frac{3}{6}-\frac{1}{6}\right)< n< -\frac{2}{3}\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)

\(\Rightarrow-4\cdot3\cdot\frac{1}{3}< n< -\frac{2}{3}\cdot\left(-\frac{11}{12}\right)\)

\(\Rightarrow-4< n< -\frac{1}{3}\cdot\left(-\frac{11}{6}\right)=\frac{11}{18}\)

=> \(-4< n< \frac{11}{18}\)

=> \(-\frac{72}{18}< n< \frac{11}{18}\)

Đến đây bạn tự xét đi nhé

21 tháng 8 2020

Ta có: \(\frac{x-y}{z}=\frac{3y}{x-z}=\frac{x}{y}\)(1)

Áp dụng tính chất DTSBN, ta được: \(\frac{x-y+3y}{z+x-z}=\frac{x}{y}\Rightarrow\frac{x+2y}{x}=\frac{x}{y}\)

\(\Rightarrow y\left(x+2y\right)=x^2\)(vì x, y, z là 3 số dương phân biệt)

\(\Rightarrow xy+2y^2=x^2\)

\(\Rightarrow xy+y^2=x^2-y^2\)

\(\Rightarrow y\left(x+y\right)=\left(x-y\right)\left(x+y\right)\)\(\Rightarrow x-y=y\Rightarrow x=2y\)

Thay x = 2y vào (1), ta được:

\(\frac{x-y}{z}=\frac{x}{y}\Rightarrow\frac{2y-y}{z}=\frac{2y}{y}\Rightarrow\frac{y}{z}=2\)\(\Rightarrow y=2z\)

Vậy x = 2y và y = 2z.

23 tháng 8 2020

a) \(x^2+y^2=0\)  ( 1 ) 

Ta có : 

\(x^2\ge0\forall x\)                                                                 

\(y^2\ge0\forall x\)     

Để ( 1 ) = 0 

\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}}\)    

\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)    

\(x^2+y^2=0\)   với \(x=y=0\) là mệnh đề đúng 

\(x^2+y^2=0\)  với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\)  là mệnh đề sai 

b) \(x^2+y^2\ne0\) ( 2 ) 

Vì \(x^2\ge0\forall x\) 

\(y^2\ge0\forall y\)   

Nên \(x^2+y^2\ne0\Leftrightarrow\orbr{\begin{cases}x^2\ne0\\y^2\ne0\end{cases}}\)    

\(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) 

\(x^2+y^2\ne0\)    với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề đúng 

\(x^2+y^2\ne0\)    với \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) là mệnh đề sai 

24 tháng 8 2020

đéo bít

A B C N M 1 2

giả thiết: CN vuông góc với AN , góc A1= góc A2, M là tđ

( Hình vẽ chỉ mang t/c minh họa)

Xét tam giác ANC vuông tại N có M là trung điểm AC=> AM=MN=MC (luông đúng khi A thay đổi)

=> tam giác AMN cân tại M => góc A2 = góc ANM

Mà A1=A2 (AN là phân giác góc BAC)=> A1=ANM(so le trong)=> MN//AB

Xét tam giác ABC có M là trung điểm của AC và MN//AB(cmt)=> MN đi qua trung điểm của BC

Vậy....

4 tháng 9 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Vì MN//AB=>MN//AB//CD(vì AB//CD)

         PQ//DC=>PQ//DC//AB(vì AB//CD)

=>MN//PQ

Xét hình thang ABQP có:      AM=PM(M là trung điểm của AB)

                                              MN//PQ//AB

=>BN=NQ hay N là trung điểm của BQ(1)

Xét hình thang MNCD có:     MP=DP(P là trung điểm của MD)

                                              MN//PQ//CD

=>NQ=QC hay Q là trung điểm của NC(2)

Từ (1) và (2)=>BN=NQ=QC

b,Xét hình thang ABQP có:    AM=PM(M là trung điểm của AP)

                                               BN=QN(N là trung điểm của BQ)

=>MN là đường trung bình của hình thang ABQP

=>MN=\(\frac{AB+PQ}{2}\)

=>AB+PQ=2MN

c, Xét hình thang MNCD có:    MP=DP(P là trung điểm của MD)

                                                 NQ=CQ(Q là trung điểm của NC)

=>PQ là đường trung bình của hình thang MNCD

=>PQ=\(\frac{MN+CD}{2}\)

=>MN+CD=2PQ

d, Vì AB+PQ=2MN =>AB=2MN-PQ(3)

        MN+DC=2PQ =>DC=-MN+2PQ(4)

Cộng từng vế tương ứng của (3) và (4) ta được:

AB+CD=2MN-PQ+(-MN)+2PQ

AB+CD=MN+PQ

27 tháng 8 2020

Mình không biết vẽ hình trên đây nên bạn thông cảm nhé

a,Xét tam giác GBC có:   GI=BI(I là trung điểm của GB)

                                        GK=CK(K là trung điểm của GC)

=>IK là đường trung bình của tam giác GBC

b, Vì IK là đường trung bình của tam giác GBC

=> \(\hept{\begin{cases}IK=\frac{1}{2}BC\\IKsongsongBC\end{cases}}\)(1)

Vì BD là đường trung tuyến kẻ từ B của tam giác ABC =>AD=CD

Vì CE là đường trung tuyến kẻ từ C của tam giác ABC =>AE=BE

Xét tam giác ABC có:     AD=CD

                                       AE=BE

=>DE là đường trung bình của tam giác ABC

=>\(\hept{\begin{cases}DE=\frac{1}{2}BC\\DEsongsongBC\end{cases}}\)(2)

Từ (1) và (2)=>\(\hept{\begin{cases}IK=ED\\IKsongsongED\end{cases}}\)