K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

\(A=\sqrt{x^2-6x+9+2\left(y^2+2y+1\right)}+\sqrt{x^2+2x+1+3\left(y^2+2y+1\right)}.\)

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Với mọi giá trị được xác định của x; giá trị của biến y không phụ thuộc vào x, ta luôn có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\le\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+1\right)^2}\)(1)

Dấu "=" khi y = -1.

(1) \(\Rightarrow A\le\left|x-3\right|+\left|x+1\right|\)(2)

  • \(x< -1\)(2) \(\Rightarrow A\le-\left(x-3\right)-\left(x+1\right)=-2x+2>4\forall x< -1\)
  • \(-1\le x\le3\)(2) \(\Rightarrow A\le-\left(x-3\right)+\left(x+1\right)=4\forall-1\le x\le3\)
  • \(x>3\)(2) \(\Rightarrow A\le\left(x-3\right)+\left(x+1\right)=2x-2>4\forall x>3\)

Vậy GTNN của A = 4 khi -1<= x <= 3 và y = -1.

4 tháng 7 2016

Đặt M; N; P như sau:

\(M=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge N=\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge P=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}.\)

1./ Xét hiệu: M - P

\(M-P=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=a-b+b-c+c-a=0\)

=> M = P

2./ Bất đẳng thức \(M\ge N\ge P\)có \(M=P\)=> \(M=N=P\)

3./ Khi M = N, ta có hiệu: M - N = 0 nên:

\(\frac{a^2-c^2}{a+b}+\frac{b^2-a^2}{b+c}+\frac{c^2-b^2}{c+a}=0\)

\(\Leftrightarrow\frac{\left(a^2-c^2\right)\left(b+c\right)\left(c+a\right)+\left(b^2-a^2\right)\left(a+b\right)\left(a+c\right)+\left(c^2-b^2\right)\left(a+b\right)\left(c+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2\)(1)

Mặt khác ta luon có bất đẳng thức: \(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)dấu "=" khi a2 = b2 = c2

Do đó để xảy ra đẳng thức (1) thì a2 = b2 = c2 hay |a| = |b| = |c|. ĐPCM

4 tháng 7 2016

Làm thì mình nghĩ mình làm dc nhưng có cái giờ phải đi học rồi . Nếu tối nay chưa ai trả lời mình sẽ trả lời 

4 tháng 7 2016

Đề Sai sửa lại nha \(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)

\(B=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}\)

\(C=\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}\)

\(D=\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)

\(\Rightarrow C=\frac{\sqrt{x}.\sqrt{y}}{\sqrt{x}.\left(\sqrt{yz}+\sqrt{y}+1\right)}=\frac{\sqrt{xy}}{\sqrt{yzx}+\sqrt{yx}+\sqrt{x}}=\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}\)

(do xyz=100 nên căn xyz=10) 

\(\Rightarrow D=\frac{\left(\frac{10.\sqrt{z}}{\sqrt{z}}\right)}{\left(\frac{\sqrt{xz}+10\sqrt{x}+10}{\sqrt{z}}\right)}=\frac{10}{\sqrt{x}+10+\frac{\sqrt{xyz}}{\sqrt{z}}}=\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)(10= căn xyz do xyz=100)

\(\Leftrightarrow A=B+C+D=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}+\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)

\(=\frac{\sqrt{xy}+\sqrt{x}+10}{\sqrt{xy}+\sqrt{x}+10}=1\)

T i c k cho mình nha cảm ơn 

4 tháng 7 2016

Ta có x.y.z=100 

Suy ra \(\sqrt{xyz}=10\)

Thay \(10=\sqrt{xyz}\) vào A ta được

\(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{zx}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)

\(A=\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{yz}}{10\left(\sqrt{yz}+\sqrt{y}+1\right)}\)

Mình giải tới đây bí mất rồi ai biết thì làm tiếp rồi chỉ bạn đó nhé

.

6
3 tháng 7 2016

Ta tìm \(n\) thỏa mãn: \(\hept{\begin{cases}n\in N^{sao}\\n^4+n^3+1=m^2\left(m\in N^{sao}\right)\end{cases}}\)

Ta có \(m^2=n^4+n^3+1>n^4\)

\(\Rightarrow m>n^2\Rightarrow m=n^2+k\left(k\in N^{sao}\right)\)

\(\Rightarrow n^4+n^3+1=\left(n^2+k\right)^2\Rightarrow n^2\left(n-2k\right)=k^2-1\ge0\)

Nếu \(k^2-1>0\) thì \(n-2k\in N^{sao}\Rightarrow k^2-1>n^2\Rightarrow k^2>n^2\Rightarrow n< k\) mâu thuẫn với \(n-2k\in N^{sao}\)

Vậy phải có \(\hept{\begin{cases}k^2-1=0\Rightarrow k=1\\n^2\left(n-2\right)=0\Rightarrow n=2\left(m=5\right)\end{cases}}\)

Vậy có duy nhất một số nguyên dương \(n\) thỏa \(n^4+n^3+1\) là số chính phương, đó là \(n=2\).

n= 2 đáy

2 tháng 7 2016

Xét q = 3 
Ta có. p^2-3p-27 =27
=> p^2 - 3p - 54 = 0
=> p = - 6 hoặc p = 9 (đều không TM)
Xét q # 3. Ta có
p^2 - pq - q^3 = 27
=> p^2 - pq = q^3 + 27
=> p(p-q) = (q+3)[q^2 - 3q + 9] (*)
Nhận xét.
*) p > p - q (1)
*) q^2 -3q+ 9 -(q+3)
= q^2 -4q +6 = (q-2)^2 +2>0
=> q^2 - 3q + 9 > q + 3
*) ƯCLN( q^2 - 3q + 9; q+3)
= ( q(q+3)-6(q+3) +27;q+3)
= (27; q+3) = (3^3; q+3)
= 1 (3) ( vì q#3 nên q + 3 không chia hết cho 3...)
Từ (1); (2); (3) => (*) <=>
{ p = q^2 - 3q + 9
{ p-q = q + 3
=> 2q + 3 = q^2 - 3q + 9
=> q^2 - 5q + 6 = 0.=> q = 2 hoặc q = 3 (đã xét )
Với q = 2 ta có p = 2q + 3
=> p = 7 (TM)
ĐS: p = 7; q = 2

2 tháng 7 2016

9 và 3

-9 và -3

mk mới hok lớp 6 à 

2 tháng 7 2016

 Đáp án cuối bằng 389

2 tháng 7 2016

Đáp án là 389. 

Tui chắc là thế

29 tháng 6 2016

\(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b

Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

2 tháng 3 2021
Không làm mà đòi có ăn thì chỉ ăn cứt ăn đâù buồi
29 tháng 6 2016

Với mọi n >1 ta đều có: \(\sqrt{n+1}>\sqrt{n}>\sqrt{n-1}>0\Rightarrow\sqrt{n+1}+\sqrt{n}>2\sqrt{n}>\sqrt{n}+\sqrt{n-1}>0\)

\(\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{n}+\sqrt{n-1}}\)\(\Rightarrow\frac{\left(n+1\right)-n}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{n-\left(n-1\right)}{\sqrt{n}+\sqrt{n-1}}\)

\(\Rightarrow\sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}< \sqrt{n}-\sqrt{n-1}\)

\(\Rightarrow2\sqrt{n+1}-2\sqrt{n}< \frac{1}{\sqrt{n}}< 2\sqrt{n}-2\sqrt{n-1}\)đpcm.

Từ đó ta có:

\(2\sqrt{2}-2< \frac{1}{\sqrt{1}}=1;\)

\(2\sqrt{3}-2\sqrt{2}< \frac{1}{\sqrt{2}}< 2\sqrt{2}-2;\)

\(2\sqrt{4}-2\sqrt{3}< \frac{1}{\sqrt{3}}< 2\sqrt{3}-2\sqrt{2};\)

...

\(2\sqrt{1006010}-2\sqrt{1006009}< \frac{1}{\sqrt{1006009}}< 2\sqrt{1006009}-2\sqrt{1006008};\)

Cộng từng vế ta được:

\(2\sqrt{1006009}-2< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2\cdot1003-1\)

\(2004< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2005\)đpcm

Một bất đẳng thức HAY và rất chặt! 1 tổng các phân thức của căn thức bị chặn bởi 2 số tự nhiên liên tiếp!