Nguyễn Tuệ Minh
Giới thiệu về bản thân
Vậy .
Giá trị này đạt tại
a, (2x +1)2 = 4x2 + 4x + 1
b, ( a - b/2 )3 = a2 - 2.a.b/2 + (b/2)2
a) Ta có : t/g ABCD là hbh
Suy ra : AD=BC
Mà E là trung điểm của AD ; F là trung điểm của BC
Suy ra : AE=DE=BF=CF
Xét tứ giác EBFD có : BF//ED ( BC//AD )
BF=ED ( cmt )
Suy ra : t/g EBFD là hbh.
b) Từ O là giao điểm của hai đường chéo của hbh ABCD hay là giao điểm của AC và BD.
Suy ra : O là trung điểm của BD hay 3 điểm B ; O ; D thẳng hàng
Ta có : t/g EBFD là hbh ( cmt )
Suy ra : BD cắt EF tại trung điểm của mỗi đường .
Mà O là trung điểm của BD
Suy ra : O cũng là trung điểm của EF.
suy ra : 3 điểm F;O;E thẳng hàng.
a) Vì ABCD là hình bình hành nên AB = CD; AB // CD.
Mà hai điểm B, C lần lượt là trung điểm AE, DF.
Suy ra AE = DF; AB = BE = CD = CF.
Tứ giác AEFD có AE // DF (vì AB // CD); AE = DF (chứng minh trên).
Do đó tứ giác AEFD là hình bình hành.
Tứ giác ABFC có AB // CF (vì AB // CD); AB = CF (chứng minh trên).
Do đó tứ giác ABFC là hình bình hành.
Vậy ta chứng minh được hai tứ giác AEFD, ABFC là những hình bình hành.
b) Vì hình bình hành AEFD có hai đường chéo AF và DE nên chúng cắt nhau tại trung điểm của mỗi đường, ta gọi giao điểm đó là O.
Hình bình hành AEFD có hai đường chéo AF và BC.
Mà O là trung điểm của AF.
Suy ra O cũng là trung điểm của BC.
Vậy các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau.
a) Do ABCD là hình bình hành nên AB // CD, AB = CD, từ đó AE // CF, AE = EB = DF = FC.
Do đó tứ giác AEFD là hình bình hành.
Tương tự, tứ giác AECF là hình bình hành vì có hai cạnh đối AE và CF song song và bằng nhau.
b) Vì AEFD là hình bình hành nên AD = EF.
Vì AECF là hình bình hành nên AF = EC.