Nguyễn Hà Linh
Giới thiệu về bản thân
a, t>5
b,x≥16
c,mức lương tối thiểu≤20 000đ
d, y>0
a) ĐKXĐ: x ≠ -5
Phương trình đã cho trở thành:
(x + 6).2 + 3.(x + 5) = 2.2(x + 5)
2x + 12 + 3x + 15 = 4x + 20
5x - 4x = 20 - 12 - 15
x = -7 (nhận)
Vậy S = {-7}
b) x + 3y = -2
x = -2 - 3y (1)
5x + 8y = 11 (2)
Thế (1) vào (2), ta được:
5(-2 - 3y) + 8y = 11
-10 - 15y + 8y = 11
-7y = 11 + 10
-7y = 21
y = 21 : (-7)
y = -3
Thế y = -3 vào (1), ta được:
x = -2 - 3.(-3) = 7
Vậy S = {7; -3}
1) sin35⁰ = cos(90⁰ - 35⁰) = cos55⁰
Vậy sin35⁰ = cos55⁰
tan35⁰ = cot(90⁰ - 35⁰) = cot55⁰
Vậy tan35⁰ = cot55⁰
2) ∆ABC vuông tại A (gt)
⇒ AB = BC.cosB
= 20.cos36⁰
≈ 16,18 (cm)
Gọi vận tốc của người đi xe máy trên 3/4 quãng đường AB đầu (90 km) là x (km/h) (x > 0)
Vận tốc của người đi xe máy trên 1/4 quãng đường AB sau là 0,5x (km/h)
Vận tốc của người đi xe máy khi quay trở lại A là x + 10 (km/h)
Tổng thời gian của chuyến đi là 90 x + 30 0 , 5 x + 120 x + 10 + 1 2 = 8 , 5
⇔ 90 x + 60 x + 120 x + 10 = 8 ⇔ 150 x + 120 x + 10 = 8 ⇔ 75 ( x + 10 ) + 60 x = 4 x ( x + 10 ) ⇔ 4 x 2 − 95 x − 750 = 0 ⇔ x = 30 ( d o x > 0 )
Vậy vận tốc của xe máy trên quãng đường người đó đi từ B về A là 30 + 10 = 40 (km/h)
∆ABC vuông tại A
⇒ tanC = AB : AC = 2/2,5 = 0,8
⇒ C ≈ 39⁰
⇒ ACD = 20⁰ + 39⁰ = 59⁰
∆ACD vuông tại A
⇒ tanACD = AD/AC
⇒ AD = AC.tanACD
= 2,5.tan59⁰
≈ 4,2 (m)
Độ dài vùng được chiếu sáng trên mặt đất:
BD = AD - AB = 4,2 - 2 = 2,2 (m)