Bùi Thanh Vân
Giới thiệu về bản thân
1. Diện tích 1 viên gạch là:
5 x 5= 25 (\(dm^2\))= 0,25 (\(m^2\))
Diện tích sân là:
9 x 8= 72 (\(m^2\))
Số viên gạch cần dùng để lát sân là:
72 : 0,25 = 288 (viên)
Số tiền dùng để mua gạch là:
35000 x 288= 1080000 (đồng)
2.
\(x^2+5y^2-4x-4x+6y+5=0\Leftrightarrow x^2+4y^2+4-4xy-4x+8y+y^2-2y+1=0\Leftrightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow x-2y-2\ge0\) hoặc \(\Leftrightarrow y-1\ge0\)
\(\Leftrightarrow x-2y-2=0\) hoặc \(\Leftrightarrow y-1=0\)
\(\Leftrightarrow x=4\) hoặc \(y=1\)
a) Xét tứ giác ADHE, ta có:
\(\widehat{A}=\widehat{D}=\widehat{E}=90\)
=> ADHE là hình chữ nhật (đpcm)
b) Áp dụng định lý Pytago, ta có:
\(AH^2-AD^2\)=\(DH^2\)
Thay số: \(5^2-4^2\)=\(DH^2\)
DH= 3cm
Diện tích của ADHE là:
4 x 3= 12(\(cm^2\))
c) Xét tứ giác BKIH, có:
DB= DI
DK= DH
=> BKHI là hình bình hành (đpcm)
Ta có: BH \(\perp\) AH
mà KI \(//\) BH
=> KI \(\perp\) AH
Ta có: AB\(\perp\) KH, KI \(\perp\) AH mà hai đường cao này giao nhau tại I
=> I là trực tâm mà HI đi qua I
=> HI\(\perp\) AK
a) 3(\(x\)+2)- 2 = 10
3(\(x\)+2)= 10+2
3(\(x\)+2)= 12
\(x\)+2= 12:3
\(x\)+2= 4
\(x\)= 4 - 2
\(x\)=2
b) \(x^2\) - 5\(x\)+ 6 = 0
(\(x^2\) - 2\(x\)) - (3\(x\) - 6) = 0
\(x\)(\(x\) - 2) - 3(\(x\) - 2) = 0
(\(x\) - 2)(\(x\)-3) = 0
\(\left\{{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
a) (6\(x^8y^2\) - 27\(x^8y\)) : 3xy
= 6\(x^8y^2\) : 3xy - 27\(x^8y\) :3xy
= 2\(x^7y\) - 9\(x^7\)
b) (2\(x^2+16x^8+3x-4\)) : (2\(x-1\))
= \(2x^2:2x+16x^8:2x+3x:2x-4:2x-2x^2:1-16x^8:1-3x:1+4:1\)
= \(x+8x^7+\dfrac{3}{2}-\dfrac{2}{x}-2x^2-16x^8-3x+4\)
= -16\(x^8+8x^7-2x^2-2x-\dfrac{2}{x}+\dfrac{11}{2}\)
c) \(\dfrac{x^2}{x^2-4}+\dfrac{1}{x-2}+\dfrac{1}{x-2}\)
= \(\dfrac{x^2}{x^2-4}+\dfrac{x+2}{x^2+4}+\dfrac{x-2}{x^2-4}\)
= \(\dfrac{x^2+2x}{x^2-4}\)= \(\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}\)