Lê Song Phương
Giới thiệu về bản thân
Ta có khoảng vân \(i=\dfrac{\lambda D}{a}=\dfrac{0,6.10^{-3}.2.10^3}{1}=1,2\left(mm\right)\)
Vân sáng thứ 3 cách vân sáng trung tâm một khoảng bằng \(x=3i=3,6mm\)
\(\Rightarrow\) Chọn B
n=int(input('n=?'))
S=0
for i in range (1,n):
if i%10==0:
S=S+i
print('Tổng S các số tự nhiên nhỏ hơn',n,'chia hết cho 2 và 5 là',S)
Dự đoán KQ chạy:
1
2
3
4
5
Code Python:
a=float(input('a=?'))
print('|',a,'|=',abs(a))
a) Ta có \(W_{t_{đầu}}=mgh=0,2.10.10=20\left(J\right)\)
Vận tốc của vật khi chạm đất là \(v=\sqrt{2gh}=\sqrt{2.10.10}=10\sqrt{2}\left(m/s\right)\)
\(\Rightarrow W_{đ_{chạmđất}}=\dfrac{1}{2}mv^2=\dfrac{1}{2}.0,2.\left(10\sqrt{2}\right)^2=20\left(J\right)\)
Ta thấy \(W_{t_{đầu}}=W_{đ_{chạmđất}}=20J\)
b) Cơ năng của vật là \(W=W_{t_{đầu}}+W_{đ_{đầu}}\) \(=20J\) (vì \(v_0=0\left(m/s\right)\))
Gọi vị trí mà động năng bằng thế năng là \(A\)
\(\Rightarrow W_{t_A}=W_{đ_A}\)
\(\Rightarrow W_{t_A}=\dfrac{1}{2}W_A=\dfrac{1}{2}W=10J\)
\(\Rightarrow mgh_A=10J\)
\(\Rightarrow0,2.10h_A=10J\)
\(\Rightarrow h_A=5\left(m\right)\)
Vậy khi vật ở độ cao 5m so với mặt đất thì động năng bằng thế năng.
a) Tứ giác BCB'C' có \(\widehat{BC'C}=\widehat{BB'C}=90^o\) nên nó là tứ giác nội tiếp (2 đỉnh kề nhau nhìn cạnh đối diện dưới 2 góc bằng nhau)
b) Vì tứ giác BCB'C' nội tiếp nên \(\widehat{AB'C'}=\widehat{ABC}\) (góc ngoài bằng góc trong đối)
Xét tam giác AB'C' và tam giác ABC có:
\(\widehat{BAC}\) chung và \(\widehat{AB'C'}=\widehat{ABC}\)
\(\Rightarrow\Delta AB'C'\sim\Delta ABC\left(g.g\right)\)
c) Theo câu b), ta có \(\widehat{AB'I}=\widehat{ABC}\)
Lại có \(\widehat{ABC}=\widehat{ADC}\) (góc nội tiếp cùng chắn cung AC)
\(\Rightarrow\widehat{AB'I}=\widehat{ADC}\) \(\Rightarrow\) Tứ giác B'IDC nội tiếp (góc ngoài bằng góc trong đối)
Đk: \(x\ge0\)
pt đã cho \(\Leftrightarrow6\sqrt{2x+7}-\left(\dfrac{3}{2}x+\dfrac{33}{2}\right)=2\sqrt{x}-\left(\dfrac{1}{2}x+\dfrac{3}{2}\right)\)
\(\Leftrightarrow\dfrac{36\left(2x+7\right)-\left(\dfrac{3}{2}x+\dfrac{33}{2}\right)^2}{6\sqrt{2x+7}+\dfrac{3}{2}x+\dfrac{33}{2}}=\dfrac{4x-\left(\dfrac{1}{2}x+\dfrac{3}{2}\right)^2}{2\sqrt{x}+\dfrac{1}{2}x+\dfrac{3}{2}}\)
\(\Leftrightarrow\dfrac{72x+252-\dfrac{9}{4}x^2-\dfrac{99}{2}x-\dfrac{1089}{4}}{6\sqrt{2x+7}+\dfrac{3}{2}x+\dfrac{33}{2}}=\dfrac{4x-\dfrac{1}{4}x^2-\dfrac{3}{2}x-\dfrac{9}{4}}{2\sqrt{x}+\dfrac{1}{2}x+\dfrac{3}{2}}\)
\(\Leftrightarrow\dfrac{-\dfrac{9}{4}x^2+\dfrac{45}{2}x-\dfrac{81}{4}}{6\sqrt{2x+7}+\dfrac{3}{2}x+\dfrac{33}{2}}=\dfrac{-\dfrac{1}{4}x^2+\dfrac{5}{2}x-\dfrac{9}{4}}{2\sqrt{x}+\dfrac{1}{2}x+\dfrac{3}{2}}\)
\(\Leftrightarrow\dfrac{x^2-10x+9}{-\dfrac{4}{9}\left(6\sqrt{2x+7}+\dfrac{3}{2}x+\dfrac{33}{2}\right)}=\dfrac{x^2-10x+9}{-4\left(2\sqrt{x}+\dfrac{1}{2}x+\dfrac{3}{2}\right)}\)
\(\Leftrightarrow\left(x^2-10x+9\right)\left[\dfrac{9}{4\left(6+\sqrt{2x+7}+\dfrac{3}{2}x+\dfrac{33}{2}\right)}-\dfrac{1}{4\left(2\sqrt{x}+\dfrac{1}{2}x+\dfrac{3}{2}\right)}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x+9=0\\\dfrac{9}{6\sqrt{2x+7}+\dfrac{3}{2}x+\dfrac{33}{2}}=\dfrac{1}{2\sqrt{x}+\dfrac{1}{2}x+\dfrac{3}{2}}\end{matrix}\right.\)
Với \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\) (nhận)
pt nhỏ thứ 2 \(\Leftrightarrow18\sqrt{x}+\dfrac{9}{2}x+\dfrac{27}{2}=6\sqrt{2x+7}+\dfrac{3}{2}x+\dfrac{33}{2}\)
\(\Leftrightarrow6\sqrt{2x+7}-18\sqrt{x}=3x-3\)
\(\Leftrightarrow2\sqrt{2x+7}-6\sqrt{x}=x-1\)
\(\Leftrightarrow\dfrac{4\left(2x+7\right)-36x}{2\sqrt{2x+7}+6\sqrt{x}}=x-1\)
\(\Leftrightarrow\dfrac{28-28x}{2\sqrt{2x+7}+6\sqrt{x}}=x-1\)
\(\Leftrightarrow\left(x-1\right)\left(1+\dfrac{28}{2\sqrt{2x+7}+6\sqrt{x}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\1+\dfrac{28}{2\sqrt{2x+7}+6\sqrt{x}}=0\left(loại\right)\end{matrix}\right.\)
Vậy pt đã cho có tập nghiệm \(S=\left\{1;9\right\}\)