Nguyễn Đức Anh Khoa

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Đức Anh Khoa
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Ta có O1^+O3^=90∘ và O2^+O3^=90∘ suy ra O1^=O2^.

Mặt khác A1^=B1^=45∘.

Xét ΔAOP và ΔBOR có

    OA=OB ( giả thiết)

    A1^=B1^=45∘

    O1^=O2^ (chứng minh trên)

Suy ra ΔAOP=ΔBOR (g.c.g)

b) Từ ΔAOP=ΔBOR suy ra OP=OR (hai cạnh tương ứng)

Chứng minh tương tự cho ΔOBR=ΔOCQ và ΔOCQ=ΔODS

Suy ra OR=OQ và OQ=OS.

Khi đó OP=OR=OS=OQ.

c) Tứ giác PRQS là hình thoi vì có bốn cạnh bằng nhau.

Mà ΔOPR có OP=OR và POR^=90∘ nên ΔOPR là tam giác vuông cân tại O

Suy ra P1^=45∘.

Tương tự P2^=45∘ nên RPS^=P1^+P2^=90∘.

Hình thoi PRQS có RPS^=90∘ nên nó là hình vuông.

a) Ta có AD=BC suy ra AD2=BC2 nên MC=ND và MC // ND

Do đó, MCDN là hình bình hành.

Lại có CD=AB=AD2=ND nên MCDN là hình thoi

b) BM // AD suy ra ABMD là hình thang.

Mà ADC^=120∘ mà DM là phân giác ADC^ nên ADM^=60∘=BAD^.

Vậy ABMD là hình thang cân.

c) ΔKAD có KAD^=KDA^ nên là tam giác cân.

Xét ΔMBK và ΔMCD có:

     MB=MC (giả thiết)

     M1^=M2^ (đối đỉnh)

     B1^=C^ (so le trong)

Vậy ΔMBK=ΔMCD (g.c.g) suy ra MK=MD (hai cạnh tương ứng).

Khi đó AM là đường trung tuyến và BK=CD (hai cạnh tương ứng)

Mà CD=AB suy ra AB=BK hay DB là đường trung tuyến.

Khi đó, ΔKAD có ba đường trung tuyến AM,BD,KN đồng quy.

a) Ta có AD=BC suy ra AD2=BC2 nên MC=ND và MC // ND

Do đó, MCDN là hình bình hành.

Lại có CD=AB=AD2=ND nên MCDN là hình thoi

b) BM // AD suy ra ABMD là hình thang.

Mà ADC^=120∘ mà DM là phân giác ADC^ nên ADM^=60∘=BAD^.

Vậy ABMD là hình thang cân.

c) ΔKAD có KAD^=KDA^ nên là tam giác cân.

Xét ΔMBK và ΔMCD có:

     MB=MC (giả thiết)

     M1^=M2^ (đối đỉnh)

     B1^=C^ (so le trong)

Vậy ΔMBK=ΔMCD (g.c.g) suy ra MK=MD (hai cạnh tương ứng).

Khi đó AM là đường trung tuyến và BK=CD (hai cạnh tương ứng)

Mà CD=AB suy ra AB=BK hay DB là đường trung tuyến.

Khi đó, ΔKAD có ba đường trung tuyến AM,BD,KN đồng quy.

a) Tứ giác ABCD có hai đường chéo AC,BD cắt nhau tại trung điểm N của mỗi đường nên là hình bình hành.

b) Ta có AP⊥BCAQ // BC suy ra AP⊥AQ.

Tứ giác APCQ có ba góc vuông nên là hình chữ nhật.

Khi đó hai đường chéo AC,PQ cắt nhau tại trung điểm của mỗi đường, mà NA=NC nên N là trung điểm của PQ.

Suy ra P,N,Q thẳng hàng.

c) Để tứ giác ABCD là hình vuông thì ta cần AB⊥BC,AB=BC hay ΔABC vuông cân tại B.

a) Tứ giác ADME có DAE^=D^=E^=90∘ nên ADME là hình chữ nhật.

b) Vì DM⊥AB và AC⊥AB nên DM // AC suy ra C^=BMD^ (so le trong).

Xét ΔDMB và ΔECM có:

     D^=E^=90∘

     BM=CM (giả thiết)

     DMB^=C^ (so le trong)

Vậy ΔDMB=ΔECM (cạnh huyền - góc nhọn)

Suy ra ME=BD (hai cạnh tương ứng) mà ME=AD nên AD=BD.

Tứ giác AMBI có hai đường chéo AB,MI cắt nhau tại D là trung điểm của mỗi đường nên là hình bình hành.

Mà MI⊥AB suy ra AMBI là hình thoi.

c) Để AMBI là hình vuông thì AM⊥BM hay AM vừa là đường trung tuyến vừa là đường cao nên ΔABC vuông cân tại A.

d) Giả sử AM cắt PQ tại F và PQ cắt AH tại O.

Khi đó ΔOAQ có OA=OQ nên  ΔOAQ cân tại O suy ra Q1^=OAQ^

ΔAMC cân tại M suy ra A1^=C^

Do đó, A1^+Q1^=C^+OAQ^=90∘

Suy ra ΔFAQ vuông tại F hay AM⊥PQ.

a) Tứ giác AEDF có EAF^=AED^=AFD^=90∘ nên là hình chữ nhật.

ΔABC vuông cân tại A có AM là trung tuyến nên AM cũng là đường phân giác EAF^.

Hình chữ nhật AEDF có đường chéo AD là tia phân giác EAF^ nên là hình vuông.

b) ΔAEF vuông tại A có AE=AF nên vuông cân tại A

Suy ra F1^=45∘=C^ mà F1^,C^ đồng vị nên EF // BC.

c) Gọi O là giao của AD với EF suy ra OE=OD=OF=OA

ΔENF vuông tại N có NO là đường trung tuyến nên NO=EO=FO

ΔAND có NO là đường trung tuyến mà NO=AD2 suy ra ΔAND vuông tại N.

a) Tứ giác DKMN có D^=K^=N^=90∘ nên là hình chữ nhật.

b) Vì DKMN là hình chữ nhật nên DF // MH

Xét ΔKFM và ΔNME có:

     K^=N^=90∘

     FM=ME ( giả thiết)

     KMF^=E^ (đồng vị)

Vậy ΔKFM=ΔNME (cạnh huyền - góc nhọn)

Suy ra KF=MN (hai cạnh tương ứng) mà MN=DK nên DF=2DK và MH=2MN.

Do đó DF=MH.

Tứ giác DFMH có DF // MH,DF=MH nên là hình bình hành.

Do đó, hai đường chéo DM,FH cắt nhau tại trung điểm O của mỗi đường hay F,O,H thẳng hàng.

c) Để hình chữ nhật DKMN là hình vuông thì DK=DN (1)

Mà DK=12DF và DN=KM=NE nên DN=12DE (2)

Từ (1),(2) suy ra DF=DE.

Vậy ΔDFE cần thêm điều kiên cân tại D.

 

a) Vì AB=2BC suy ra BC=AB2=AD

ABCD là hình chữ nhật nên AB=DC suy ra 12AB=12DC do đó AI=DK=AD.

Tứ giác AIKD có AI // DK,AI=DK nên AIKD là hình bình hành.

Lại có AD=AI nên AIKD là hình thoi.

Mà IAD^=90∘ do đó AIKD là hình vuông.

Chứng minh tương tự cho tứ giác BIKC

b) Vì AIKD là hình vuông nên DI là tia phân giác ADK^ hay IDK^=45∘.

Tương tự ICD^=45∘.

ΔIDC cân có DIC^=90∘ nên là tam giác vuông cân.

c) Vì AIKD,BCKI là các hình vuông nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên SI=SK=DI2 và IR=RK=IC2

Suy ra ISKR là hình thoi.

Lại có DIC^=90∘ nên ISKR là hình vuông.

a) ABCD là hình vuông nên AB=BC=CD=DA

Mà AM=BN=CP=DQ.

Trừ theo vế ta được AB−AM=BC−BN=CD−CP=DA−DQ

Suy ra MB=NC=PD=QA

b) Xét ΔQAM và ΔNCP có:

A^=C^=90∘

AQ=NC (chứng minh trên)

AM=CP (giả thiết)

Suy ra ΔQAM=ΔNCP (c.g.c)

c) Từ ΔQAM=ΔNCP suy ra NP=MQ (hai cạnh tương ứng).

Chứng minh tương tự câu b ta có ΔQAM=ΔPDQ và ΔQAM=ΔMBN.

Khi đó ⇒MQ=PQ,MN=MQ và AMQ^=DQP^.

Mà AMQ^+AQM^=90∘ suy ra DQP^+AQM^=90∘.

Do đó, MQP^=90∘.

Tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi, lại có MQP^=90∘ nên là hình vuông.

a) Tứ giác AMCK có hai đường chéo AC,MK cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

ΔABC vuông tại A có AM là đường trung tuyến nên AM=MC=MB.

Vậy hình bình hành AMCK có AM=MC nên là hình thoi.

b) Vì AMCK là hình thoi nên AK // BM và AK=MC=BM.

Tứ giác AKMB có AK // BM,AK=BM nên là hình bình hành.

c) Để AMCK là hình vuông thì cần có một góc vuông hay AM⊥MC.

Khi đó ΔABC có AM vừa là đường cao vừa là đường trung tuyến nên cân tại A.

Vậy ΔABC vuông cân tại A thì AMCK là hình vuông.