ღღ_๖ۣ nhók_lùn ❣_ღღ
Giới thiệu về bản thân
a) \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=2\)
tính tương tự AC= \(\sqrt{34}\) , BC=\(3\sqrt{2}\)
b) I là tâm đường tròn ngoại tiếp tam giác ABC => I là trọng tâm tam giác ABC => \(x_I=\dfrac{x_A+x_B+x_C}{3}\) = 10/3
\(y_I=\dfrac{y_A+y_B+y_C}{3}\) = 2
=> I ( 10/3 ; 2 )
số số hạng của pt: (99-1)/2 +1 = 50
VT >0 => VP>0 => x>0
phương trình tương đương : x+1 + x+3 +...+ x+99 = 52x
50x + \(\dfrac{\left(99+1\right)\cdot50}{2}\) = 52x
2x = 2500
=> x= 1250 (thỏa mãn)
công thức: \(\dfrac{a^m}{a^n}=a^{m-n}\)
do \(5^{2x-3}\ne0\)
=> \(\dfrac{5^{2x-1}}{5^{2x-3}}=1+24\cdot\dfrac{5^3}{5^{2x-3}}\)
\(\Rightarrow5^2=1+24\cdot5^{6-2x}\)
\(\Leftrightarrow5^{6-2x}=1\)
\(\Leftrightarrow6-2x=0\) => x=3
\(\dfrac{2}{9}=\dfrac{2\cdot10}{9\cdot10}=\dfrac{20}{90}\) ; \(\dfrac{3}{10}=\dfrac{3\cdot9}{10\cdot9}=\dfrac{27}{90}\)
=> 6 ps cần tìm : 21/90 ; 22/90 ; 23/90 ; 24/90 ; 25/90 ; 26/90
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053
từ I kẻ IM vuông góc AC , từ B kẻ BN vuông góc AC => IM // BN
áp dụng định lý Menelous vào tam giác BCD có 3 điểm A ,I , E thẳng hàng và cắt 3 cạnh tam giác :
\(\dfrac{EC}{EB}\cdot\dfrac{IB}{ID}\cdot\dfrac{AD}{AC}=1\)
=> 2 . \(\dfrac{IB}{ID}\) . 3/4 = 1
=> \(\dfrac{IB}{ID}=\dfrac{4}{3}\)
\(\Rightarrow\dfrac{DI}{DB}=\dfrac{3}{7}\)
Do IM // BN => \(\dfrac{DI}{DB}=\dfrac{IM}{BN}=\dfrac{3}{7}\)
S abc = \(\dfrac{1}{2}BN\cdot AC\)
S iad = \(\dfrac{1}{2}IM\cdot AD\) \(\Rightarrow\dfrac{Siad}{Sabc}=\dfrac{IM}{BN}\cdot\dfrac{AD}{AC}=\dfrac{3}{7}\cdot\dfrac{3}{4}=\dfrac{9}{28}\)
mà S iad = 18 => S abc = 28*18 : 9 = 56
\(7+7^2+7^3+7^4+7^5\) = \(7\left(1+7+7^2+7^3+7^4\right)\)
=> tổng là hợp số vì tổng chia hết cho 1 , 7 và chính nó
3n + 4 \(⋮\) n-1
\(\Leftrightarrow\) 3( n-1) +7 \(⋮\) n-1
\(\Leftrightarrow\) 7 \(⋮\) n-1
=> n-1 \(\in\) Ư(7)
\(\left[{}\begin{matrix}n-1=7\\n-1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=8\\n=2\end{matrix}\right.\)
\(⋮\)
\(\Leftrightarrow\)
a)
FeO : Fe hóa trị 2
Fe2O3 : htri 3
b) CO2