Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Nghiệm của phương trình tanx=−1 là
Cho dãy số (un) với un=n2a−1. Khẳng định nào sau đây đúng?
Dãy số nào sau đây là cấp số cộng?
Hàm số nào dưới đây là hàm số lẻ?
Hàm số nào dưới đây có đồ thị là đường cong như hình vẽ?
Nghiệm của phương trình sinx=1 là
Cho mẫu số liệu ghép nhóm về chiều cao của 20 học sinh lớp lá như sau:
Chiều cao (cm) | [70;79) | [79;88) | [88;97) | [97;106) | [106;115) |
Số học sinh | 1 | 2 | 4 | 10 | 3 |
Trung vị của mẫu số liệu ghép nhóm này là
Số nghiệm trong đoạn [0;2π] của phương trình cos2x−2sin2x=2−1 là
Tổng n số hạng đầu tiên của một cấp số cộng cho bởi Sn=3n2−n. Công sai của cấp số cộng đó là
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn u2=12 và u4=192. Tổng của 9 số hạng đầu tiên của cấp số nhân đó là
Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:
Điểm |
[6;7) |
[7;8) |
[8;9) |
[9;10] |
Số học sinh |
8 |
7 |
10 |
5 |
a) Mẫu số liệu đã cho là mẫu số liệu ghép nhóm. |
|
b) Cỡ mẫu của mẫu số liệu là 30. |
|
c) Điểm trung bình của các học sinh là 7,9. |
|
d) Mốt của mẫu số liệu là 10. |
|
Cho phương trình sin(2x−4π)=sin(x+43π).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình có nghiệm x=π+k2πx=6π+k32π,(k∈Z). |
|
b) Trong khoảng (0;π) phương trình có 2 nghiệm. |
|
c) Tổng các nghiệm của phương trình trong khoảng (0;π) bằng 67π. |
|
d) Trong khoảng (0;π) phương trình có nghiệm lớn nhất bằng 65π. |
|
Do nhu cầu đi lại của gia đình, anh Bình quyết định thực hiện tích góp tiền để mua một chiếc ôtô HONDA CRV trị giá 1,259 tỉ đồng.
Đợt thứ nhất: anh Bình đã tích góp theo nguyên tắc tháng sau tích góp nhiều hơn tháng ngay trước đó số tiền là 2 triệu đồng và cứ như thế đến tháng thứ 10 anh phải góp 21 triệu đồng. Đến hết đợt thứ nhất anh Bình có tất cả 624 triệu đồng.
Đợt thứ hai kế tiếp: do muốn rút ngắn thời gian mua xe thì số tiền còn lại anh tiếp tục tích góp với tháng đầu là 5 triệu đồng và mỗi tháng tiếp theo số tiền gấp đôi tháng kề trước nó.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đợt thứ nhất anh Bình tích lũy tiền theo dãy số với cấp số cộng có công sai là d=2 triệu đồng và u1=3 triệu đồng. |
|
b) Anh Bình tích lũy tiền hết đợt thứ nhất trong 25 tháng. |
|
c) Đợt thứ hai anh Bình tích lũy tiền theo dãy số với cấp số nhân có công bội là q=2 triệu đồng và u1=5 triệu đồng. |
|
d) Để đủ tiền mua ôtô thì anh Bình thì anh Bình tích góp ít nhất 31 tháng. |
|
Vào năm con gái được 4 tuổi, một người cha chuẩn bị gửi tiết kiệm đầu mỗi năm một số tiền x, (x∈N) để đến năm con gái 18 tuổi sẽ có được 200 triệu cho con gái đi học đại học. Hiện tại lãi suất tiền gửi hàng năm là 4,8%/năm. Giả sử lãi suất này được giữ ổn định.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số tiền thu về sau 14 năm là một cấp số nhân có q=(1+4,8%). |
|
b) Số tiền tiết kiệm được sau năm thứ nhất là x+x.(1+4,8%). |
|
c) x=9. |
|
d) Đến năm con gái được 10 tuổi, người cha dự định khi con gái được 18 tuổi sẽ mua thêm cho con gái một chiếc xe máy trị giá 50 triệu đồng. Do đó, kể từ thời điểm đầu năm con gái được 10 tuổi người này cần gửi tiết kiệm y triệu đồng đến khi con gái 18 tuổi, (y∈N). Giá trị nhỏ nhất của y=15. |
|
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Gọi n là số nghiệm của phương trình sin(2x+30∘)=23 trên khoảng (−180∘;180∘). Tìm n.
Trả lời:
Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 90 m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút.
Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? (làm tròn kết quả tới hàng phần mười)
Trả lời:
Cho dãy số (un) biết un=n+2an+5. Có bao nhiêu giá trị nguyên của a nhỏ hơn 100 để dãy số (un) là dãy số tăng.
Trả lời:
Sinh nhật bạn của An vào ngày 1 tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 1000 đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời: