K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Ta có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75},\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)nên :

\(A>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

\(A< \frac{1}{51}.25+\frac{1}{76}.25< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(\frac{7}{12}< A< \frac{5}{6}\)

9 tháng 1 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{100}-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Ta có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)

\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)

\(\Rightarrow A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(1\right)\)

Lại có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{25}{50}=\frac{1}{2}\)

\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)

\(\Rightarrow A< \frac{1}{2}+\frac{1}{3}=\frac{5}{6}\left(2\right)\)

Từ (1) và (2) => \(\frac{7}{12}< A< \frac{5}{6}\left(đpcm\right)\)

9 tháng 1 2018

với mọi n thuộc N đều được viết dưới dạng : 3k , 3k + 1, 3k + 2

với n = 3k thì :

2n - 1 = 23k - 1 = 8k - 1 = ( 8 - 1 ) . ( 8k-1 + 8k-2 + ... + 8 + 1 ) = 7M \(⋮\)7

với n = 3k + 1 thì :

2n - 1 = 23k+1 - 1 = 2 . 23k - 1 = 2 . 8k - 1 = 2 . ( 8k - 1 ) + 1 = 2 . 7M + 1 chia 7 dư 1

với n = 3k +2 thì :

2n - 1 = 23k+2 - 1 = 4 . 8k - 1 = 4 . ( 8k - 1 ) + 3 = 4 . 7M + 3 chia 7 dư 3

Vậy với n = 3k thì 2n - 1 chia hết cho 7

9 tháng 1 2018

Bố mày chịu

10 tháng 1 2018

cỏ thẳng là cỏ ko cúi , cỏ ko cúi là củi ko có .

1 + 1 = 2 

9 tháng 1 2018

mk nghĩ là ổng thấy cẳng thỏ nên ông sợ quá thế là ông quay về. 

Và 1 + 1 = 2

bn ra câu hỏi 2 hơi hack não ^_^

9 tháng 1 2018

Có : f(1) = a+2

f(f(1)) = f(a+2) = a.(a+2)+2 = a^2+2a+2

=> a^2+2a+2 = 2

=> a^2+2a = 2-2 = 0

=> a.(a+2) = 0

=> a=0 hoặc x+2=0

=> a=0 hoặc a=-2

Tk mk nha

9 tháng 1 2018

Ta có:       \(f\left(x\right)=ax+2\)

\(\Leftrightarrow\)\(f\left(1\right)=a+2=1\)

\(\Rightarrow\)\(a=1-2=-1\)

Vậy...

9 tháng 1 2018

Vì ta có VT = (a2 + a + 1) - (a2 + a - 1)

                 = a2 + a + 1 - a2 - a + 1

                 = 2 = VP

Vậy (a2 + a + 1) - (a2 + a - 1) = 2