K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

Lại có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)(bình phương hai vế)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)(Vì \(ayz+bxz+cxy=0\))

31 tháng 12 2016

a) = 5(3x+4y)

b) = (x2-y2) -(x-y)

    = (x-y)(x+y)-(x-y)

    =(x-y)(x+y+1)

c) = x(x2+x+1)

    = x(x+1)2

d) = (23)2-(x3)2

     = (23-x3)(23+x3)

31 tháng 12 2016

a, = 5(3x+4y)
b,=(x-y)(x+y)-(x-y)
   =(x-y)(x+y+1)
c,=x(x2-2x+1)
   =x(x-1)2
d,=(23-x3)(23+x3)

31 tháng 12 2016

Làm ra thì dài làm nên cho b đáp án thôi nhé

\(P=x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=\left(z-y-x\right)\left(z-y+x\right)\left(z+y-x\right)\left(z+y+x\right)\)

31 tháng 12 2016

x^2+y^2+6y+5=0

y^2+6y+9+x^2-4=0

(y+3)^2+(x^2+4)=0

<=>(y+3)^2=0 và (x^2-4)=0

<=>y=-3 và x=+-2

31 tháng 12 2016

x, y có nguyên không bạn

31 tháng 12 2016

Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

31 tháng 12 2016

đặt 2p+1=n3 (n là số tự nhiên)

<=>2p=n3-1=(n-1)(n2+n+1)

vì p là số nguyên tố nên ta có

{n-1=2

{n2+n+1=1

=>p=3

tk nha bạn

thank you bạn

(^_^)

31 tháng 12 2016

Từ phương trình ta thấy rằng x phải là số lẻ

Ta có: \(x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2=2y^2-8y+3\)

\(\Leftrightarrow4k^2+4k+1=2y^2-8y+3\)

\(\Leftrightarrow2k^2+2k=y^2-4y+1\)

\(\Leftrightarrow2k\left(k+1\right)=y^2+1-4y\)

Ta nhận xét thấy VT chia hết cho 4

Vế phải không chia hết cho 4 vì số chính phương chỉ có 2 dạng là 4n và 4n+1 nên y2 + 1 - 4y không thể chia hết cho 4 được

Vậy phương trình đã cho vô nghiệm

31 tháng 12 2016

Sửa đề lại cho đúng đi b

31 tháng 12 2016

Dùng sơ đồ hoocno mà giải đi bạn

1 tháng 1 2017

(Câu trả lời của alibaba nguyễn đúng mà hài!!!)

Sơ đồ Horner hoạt động như sau:

 10abc
313a+93a+b+279a+3b+c+27
316a+276a+b+10827a+6b+c+351
3...............
  • Kẻ bảng, trên dòng đầu tiên ghi các hệ số của đa thức đầu tiên, ở đây là \(1,0,a,b,c\).
  • Theo định lí Bezout thì đa thức sẽ có nghiệm bội 3 là số 3, do đó chừa một cột bên tay trái ghi nghiệm (là số 3).
  • Hạ hệ số (là 1) xuống, thực hiện quy tắc "nhân ngang cộng chéo" (nhân từ nghiệm qua rồi cộng chéo lên).
  • VD: 3 nhân 1 cộng 0 là 3, viết 3. 3 nhân 3 cộng a là a+9, viết a+9. 3 nhân (a+9) cộng b là 3a+b+27, viết 3a+b+27...
  • Để 3 là nghiệm của đa thức thì hệ số cuối cùng là 0, tức là \(9a+3b+c+27=0\).
  • Tự làm tiếp, ra thêm 2 cái phương trình nữa...