K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)

\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)

\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)

\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)

\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)

\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)

Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)

 

18 tháng 7 2015

Áp dụng Côsi:

\(\frac{\sqrt{2003}\sqrt{x-2001}}{\left(x+2\right)\sqrt{2003}}+\frac{\sqrt{2002}\sqrt{x-2002}}{x\sqrt{2002}}\le\frac{2003+x-2001}{2\left(x+2\right)\sqrt{2003}}+\frac{2002+x-2002}{2x\sqrt{2002}}\)

\(\frac{x+2}{2\left(x+2\right)\sqrt{2003}}+\frac{x}{2x\sqrt{2002}}=\frac{1}{2\sqrt{2003}}+\frac{1}{2\sqrt{2002}}\)

Dấu "=" xảy ra khi \(2003=x-2001\text{ và }2002=x-2002\Leftrightarrow x=4004\)

Vậy GTLN của biểu thức là \(\frac{1}{2\sqrt{2003}}+\frac{1}{2\sqrt{2002}}\)

18 tháng 7 2015

\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1.

18 tháng 7 2015

+x = 0 thì pt (1) thành 0 = 1 (vô lí)

+Xét x khác 0.

\(pt\left(1\right)\Leftrightarrow2+3y=\frac{1}{x^3};\text{ }pt\left(2\right)\Leftrightarrow y^3=2+\frac{3}{x}\)

Đặt \(a=\frac{1}{x}\) thì hệ thành

\(2+3y=a^3;\text{ }2+3a=y^3\)

\(\Rightarrow2+3y+y^3=2+3a+a^3\Leftrightarrow a^3-y^3+3\left(a-y\right)=0\)

\(\Leftrightarrow\left(a-y\right)\left(a^2-ay+y^2+3\right)=0\)

\(\Leftrightarrow a=y\text{ (do }a^2-ay+y^2+3=\left(a-\frac{y}{2}\right)^2+\frac{3y^2}{4}+3>0\text{)}\)

Thay vào pt đầu ta có: \(a^3=3a+2\Leftrightarrow\left(a+1\right)^2\left(a-2\right)=0\Leftrightarrow a=-1\text{ hoặc }a=2\)

\(+a=-1\Rightarrow y=-1;\text{ }x=\frac{1}{a}=-1\)

\(+a=2\Rightarrow b=2;\text{ }x=\frac{1}{a}=\frac{1}{2}\)

Vậy tập nghiệm của hệ là \(S=\left\{\left(-1;-1\right);\left(\frac{1}{2};2\right)\right\}\)

18 tháng 7 2015

áp dụng BĐT cô-si ta có:

\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1

 

18 tháng 7 2015

cái câu hỏi 2 tớ ko bik đúng ko