4 + 90 = ? 7 x 5 =? 3 + 333 = ? 444 +555 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+\sqrt{2}}.P=\sqrt{1+2x}.\sqrt{1+\sqrt{2}}+\sqrt{1+2y}.\sqrt{1+\sqrt{2}}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{1+\sqrt{2}}.P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow\sqrt{2}\ge x+y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
\(\Rightarrow\sqrt{1+\sqrt{2}}P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\le\frac{4+2.\sqrt{2}+2.\sqrt{2}}{2}=2+2\sqrt{2}\)
\(\Leftrightarrow P\le\frac{2+2.\sqrt{2}}{\sqrt{1+\sqrt{2}}}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Mới nghĩ ra được max. Các cao nhân ai thấy sai thì sửa hộ e nhé.
áp dụng bất đẳng thức bunhiacopxki
\(P^2=\left(1.\sqrt{1+2x}+1.\sqrt{1+2y}\right)^2\le\left(1^2+1^2\right)\left(1+2x+1+2y\right)\)
\(=4\left(1+x+y\right)\)
Lại có \(\left(x.1+y.1\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.\)
\(\Rightarrow|x+y|\le\sqrt{2}.\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\Leftrightarrow-\sqrt{2}+1\le1+x+y\le\sqrt{2}+1\)
\(\Rightarrow P^2\le4\left(1+x+y\right)\le4.\left(\sqrt{2}+1\right)\)
\(\Leftrightarrow-2\sqrt{\sqrt{2}+1}\le P\le2\sqrt{\sqrt{2}+1}\)
Vậy Max \(P=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}.\)
sorry nhìu , nếu có đk x, y>=0 thì mk mới tìm được minP=3
nếu k phải thì mong cao nhân chỉ cho ak
1+1=2 5+5=10 9+9=18
2+2=4 6+6=12 10+10=20
3+3=6 7+7=14
4+4=8 8+8=16
Trả lời :
4+90=94
7x5=35
3+333=336
444+555=999
Hok_Tốt
#Thiên_Hy
4+90=94
7x5=35
3+333=336
444+555=999
học tốt