cho hàm số y=(m-2)x+2 với m khác 2 có ddooof thị là đường thẳng d a)vẽ đồ thị hàm số m=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi I là trung điểm BC
tam giác BEC vuông tại C, I là trung điểm BC
=> \(IE=\frac{1}{2}BC=IB=IC\)(1)
tam giác BDC vuông tại D, I là trung điểm BC
=> \(ID=\frac{1}{2}BC=IB=IC\)(2)
Từ (1) ; (2) suy ra B;E;C;D thuộc đường tròn tâm I, bán kính BC
b, Ta có : R = IC = \(\frac{1}{2}BC=\frac{a}{2}\)
Vì IH < IC = R nên H nằm trong đường tròn (O;IC)
Vì IA > IC = R nên A nằm ngoài đường tron (O;IC)
A B C D E H O
a, BD _|_ AC ; CE _|_ AB (gt) => ^CEB = ^BDC = 90
=> E vaf D thuộc đường tròn đường kính BC
=> B;E;D;C thuộc đường tròn đường kính BC
b, gọi O là trung điểm của BC mà B;E;D;C thuộc đường tròn đường kính BC
=> O là tâm đường tròn ngoại tiếp tứ giác BEDC
=> OB = r = 1/2BC = 1/2a
xét tam giác ABO có ^AOB = 90 => OB^2 + OA^2 = AB^2 (Pytago)
=> (1/2a)^2 + OA^2 = a^2
=> OA = \(\frac{\sqrt{3}}{2}a\) do OA > 0
có tg ABC đều => trực tâm đồng thời là trọng tâm => OH = 1/3OA
=> OH = \(\frac{\sqrt{3}}{4}a\)
vì \(\frac{\sqrt{3}}{4}a< \frac{1}{2}a\) nên OH < OB hay OH < r
=> H nằm trong đường (O)
vì \(\frac{\sqrt{3}}{2}a>\frac{1}{2}a\) nên OA > OB hay OA > r
=> A nằm ngoài (O)
a, ĐK : \(x\ne\pm5\)
b, \(A=\left(\frac{x+5}{x-5}-\frac{x-5}{x+5}\right):\left(\frac{2x}{x+5}-2\right)\)
\(=\left(\frac{x^2+10x+25-x^2+10x-25}{\left(x-5\right)\left(x+5\right)}\right):\left(\frac{2x}{x+5}-\frac{2\left(x+5\right)}{x+5}\right)\)
\(=\left(\frac{20x}{\left(x-5\right)\left(x+5\right)}\right):\left(\frac{-10}{x+5}\right)=\frac{-2x}{x-5}\)
c, Ta có : \(-\frac{2x}{x-5}=\frac{4}{9}\Rightarrow-18x=4x-20\Leftrightarrow-22x=-20\Leftrightarrow x=\frac{10}{11}\)(tm)
d, \(\frac{-2x}{x-5}=\frac{-2\left(x-5\right)-15}{x-5}=-2-\frac{15}{x-5}\)
\(\Rightarrow x-5\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
x - 5 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
x | 6 | 4 | 8 | 2 | 10 | 0 | 20 | -10 |
a, Để hai đường thẳng cắt nhau khi \(3m-2\ne-2\Leftrightarrow m\ne0\)
b, Để hai đường thẳng song song khi \(3m-2=-2;2k-1\ne3k\Rightarrow m=0;k\ne-1\)
c, Để hai đường thẳng trùng nhau khi \(3m-2=-2;2k-1=3k\Rightarrow m=0;k=-1\)
\(1-2\sin a.\cos a=0\)
\(\Leftrightarrow1-\sin2a=0\)
\(\Leftrightarrow\sin2a=1\)
\(\Leftrightarrow2a=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow a=\frac{\pi}{4}+k\pi\)
A B C x
có \(\sin x=\frac{AB}{BC}\) và \(\cos x=\frac{AC}{BC}\)
\(\Rightarrow\hept{\begin{cases}\sin^2x=\frac{AB^2}{BC^2}\\\cos^2x=\frac{AC^2}{BC^2}\end{cases}}\)
\(\Rightarrow\sin^2x+\cos^2x=\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1\left(pytago\right)\)
\(7\sqrt{x}=42\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
\(\sqrt{x}>5\Leftrightarrow x>25\)
\(\sqrt{x}< 3=x< 9\)
\(3\sqrt{x}>25\Leftrightarrow\sqrt{x}>\frac{25}{3}\Leftrightarrow x>\frac{625}{9}\)
\(M=\frac{a^3-8a+\left(a^2-16\right)\sqrt{a^2-9}-5a^2+48}{a^3-8a+\left(a^2-16\right)\sqrt{a^2-9}+5a^2-48}\)
\(=\frac{\left(a-4\right)^2\left(a+3\right)+\left(a-4\right)\left(a+4\right)\sqrt{\left(a-3\right)\left(a+3\right)}}{\left(a+4\right)^2\left(a-3\right)+\left(a-4\right)\left(a+4\right)\sqrt{\left(a-3\right)\left(a+3\right)}}\)
\(=\frac{\sqrt{a+3}\left(a-4\right)\left[\left(a-4\right)\sqrt{a+3}+\left(a+4\right)\sqrt{a-3}\right]}{\sqrt{a-3}\left(a+4\right)\left[\left(a+4\right)\sqrt{a-3}+\left(a-4\right)\sqrt{a+3}\right]}\)
\(=\frac{\sqrt{a+3}\left(a-4\right)}{\sqrt{a-3}\left(a+4\right)}\)
(d) y = (m - 2)x + 2 với m = 3
=> y = x + 2
d cắt Oy tại điểm có tung độ là b = 2
d cắt Ox tại điểm có hoành độ là -b/a = -2
O x y d 2 -2
a, Thay m = 3 vào ptđt trên ta được : y = x + 2
Vậy A(0;2) ; B(-2;0)
x y O 2 -2 A B d1