Chứng minh :(x+y)*(y+Z)*(x+z)\(\ge\)8xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi dây trên là dây AB. Hạ OH⊥⊥AB = {H} (cd)
Xét (O) 1 phần đường kính OH: OH⊥⊥AB = {H} (cd)
=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)
OH⊥⊥AB = {H} (cd) => ΔΔOHB vuông tại H (đn)
=> OH22+ HB22= OB22(Đl Py-ta-go)
T/s: OH22+ 622= R22
<=> OH22+36 = 1022=100
<=> OH22= 64 => OH = 8 (cm)
Gọi H là chân đường cao kẻ từ O
=> H là trung điểm AB
=> AH = AB/2 = 12/2 = 6 cm
Theo định lí Pytago cho tam giác AOH vuông tại H
\(AO^2=OH^2+AH^2\Rightarrow OH^2=AO^2-AH^2=100-36=64\Rightarrow OH=8\)cm
Ta có : BE // AC ; ^BAC = 900 => ^ABC = 900
Xét tam giác ABE vuông tại B, đường cao BH
* Áp dụng hệ thức : \(BH^2=AH.HE=16.9\Rightarrow BH=4.3=12\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{12}=\frac{89}{3}\)cm
=> BC = CH + BH = 12 + 89/3 = 125/3 cm
Áp dụng định lí Pytago tam giác CHE vuông tại H
\(CE^2=CH^2+HE^2=\frac{7921}{9}+81\Rightarrow CE=\frac{5\sqrt{346}}{3}\)cm
\(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Dấu ''='' xảy ra khi x = -1
Vậy ta có đpcm
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)\div\frac{a+2}{a-2}\left(a\ne\pm2;a\ne1;a>0\right)\)
\(A=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\frac{a-2}{a+2}\)
\(A=\left(\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}\right).\frac{a-2}{a+2}\)
\(A=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right).\frac{a-2}{a+2}\)
\(A=\frac{2\sqrt{a}}{\sqrt{a}}.\frac{a-2}{a+2}\)
\(A=\frac{2\left(a-2\right)}{a+2}\)
\(A=\frac{2a-4}{a+2}\)
ta có
\(B=\sqrt{2-\sqrt{2\sqrt{5}-2}}-\sqrt{2+\sqrt{2\sqrt{5}-2}}\)<0 nên ta có :
\(\Rightarrow B^2=2-\sqrt{2\sqrt{5}-2}+2+\sqrt{2\sqrt{5}-2}+2\sqrt{4-\left(2\sqrt{5}-2\right)}=4+2\sqrt{6-2\sqrt{5}}\)
\(=4+\sqrt{5}-1=\sqrt{5}+3\Rightarrow B=-\sqrt{\sqrt{5}+3}\)
KHÓ QUÁ KHÔNG AI GIẢI ĐƯỢC HỎI NGƯỜI LỚN KHÔNG TRẢ LỜI DƯỢC THÌ LÊN ĐỒN CÔNG AN MÀ HỎI
Theo BĐT Cauchy ta có :
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{xz}\)
Nhân vế với vế của bđt ta được : \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}\)
\(=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu ''='' xảy ra khi x = y = z = 1