cho tam giác ABC có M,N,I lần lượt là trung điểm của AB,AC và BC.
C/Minh góc AMN=góc INC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Đặt 2x+10=0
=>2x=-10
=>x=-5
b: Đặt 4(x-1)+3x-5=0
=>4x-4+3x-5=0
=>7x=9
=>\(x=\dfrac{9}{7}\)
c: Đặt \(-1\dfrac{1}{3}x^2+x=0\)
=>\(\dfrac{4}{3}x^2-x=0\)
=>\(x\left(\dfrac{4}{3}x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\\dfrac{4}{3}x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\)
Bài 5:
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
ta có: BA=BM
=>B nằm trên đường trung trực của AM(1)
Ta có: DA=DM
=>D nằm trên đường trung trực của AM(2)
Từ (1),(2) suy ra BD là đường trung trực của AM
c: Xét ΔBKC có
KM,CA là các đường cao
KM cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC tại N
Bài 2:
Độ dài của `1/3` quãng đường đầu là:
`1/3*600=200` (km)
Thời gian xe đi trên `1/3` quãng đường đầu là:
\(\dfrac{200}{x}\left(h\right)\)
Quãng đường còn lại là: `600 - 200 = 400`(km)
Vận tốc của xe khi đi trên quãng đường còn lại: `x+10` (km/h)
Thời gian xe đi trên quãng đường còn lại là:
\(\dfrac{400}{x+10}\left(h\right)\)
Biểu thức thể hiện thời gian xe đi từ Hà Nội đến Quãng Ngãi là:
\(\dfrac{200}{x}+\dfrac{400}{x+10}=\dfrac{200\left(x+10\right)}{x\left(x+10\right)}+\dfrac{400x}{x\left(x+10\right)}=\dfrac{200x+2000+400x}{x\left(x+10\right)}=\dfrac{600x+2000}{x\left(x+10\right)}\)
`#3107.101107`
`a + b + c = 0`
`=> (a + b + c)^3 = 0`
`=> a^3 + b^3 + c^3 + 3a^2b + 3ab^2 + 3b^2c + 3bc^2 + 3a^2c + 3ac^2 + 6abc = 0`
`=> a^3 + b^3 + c^3 + 3a^2b + 3ab^2 + 3b^2c + 3bc^2 + 3a^2c + 3ac^2 + 6abc + 3abc - 3abc = 0`
`=> a^3 + b^3 + c^3 + (3a^2b + 3ab^2 + 3abc) + (3b^2c + 3bc^2 + 3abc) + (3a^2c + 3ac^2 + 3abc) - 3abc = 0`
`=> a^3 + b^3 + c^3 + 3ab(a + b + c) + 3bc(b + c + a) + 3ac(a + c + b) = 3abc`
`=> a^3 + b^3 + c^3 + (3ab + 3bc + 3ac)(a + b + c) = 3abc`
Mà `a + b + c = 0`
`=> a^3 + b^3 + c^3 = 3abc` (đpcm).
a) \(x^2-36=0\)
\(\Leftrightarrow x^2-6^2=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy: ...
b) \(x^2-10x+25=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot5+5^2=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
Vậy: ...
a) \(x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy \(x\in\left\{6;-6\right\}\)
b) \(x^2-10x+25=0\)
\(\Leftrightarrow x^2-2.x.5+5^2=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
a) \(\left(3x-1\right)\left(x+2\right)-\left(x+2\right)^2\)
\(=\left(3x^2+6x-x-2\right)-\left(x+2\right)^2\)
\(=\left(3x^2+5x-2\right)-\left(x^2+4x+4\right)\)
\(=3x^2+5x-2-x^2-4x-4\)
\(=2x^2+x-6\)
b) \(\left(x-1\right)\left(x+1\right)-\left(x^2-2x+1\right)\)
\(=\left(x^2-1\right)-\left(x^2-2x+1\right)\)
\(=x^2-1-x^2+2x-1\)
\(=2x-2\)
c) \(\left(x-4\right)\left(4+x\right)+2x\left(x-3\right)\)
\(=\left(x-4\right)\left(x+4\right)+2x\left(x-3\right)\)
\(=\left(x^2-16\right)+2x^2-6x\)
\(=x^2-16+2x^2-6x\)
\(=3x^2-6x-16\)
d) \(\left(x-1\right)\left(x^2-1\right)+\left(x+2\right)^3\)
\(=\left(x^3-x-x^2+1\right)+\left(x^3+6x^2+12x+8\right)\)
\(=x^3-x-x^2+1+x^3+6x^2+12x+8\)
\(=2x^3+5x^2+11x+9\)
e) \(\left(2x-1\right)^2-\left(2x-5\right)\left(x+5\right)\)
\(=\left(4x^2-4x+1\right)-\left(2x^2+10x-5x-25\right)\)
\(=\left(4x^2-4x+1\right)-\left(2x^2+5x-25\right)\)
\(=4x^2-4x+1-2x^2-5x+25\)
\(=2x^2-9x+26\)
f) \(\left(3x+1\right)^2-\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(9x^2+6x+1\right)-\left(x^4+2x^2-x^2-2\right)\)
\(=\left(9x^2+6x+1\right)-\left(x^4+x^2-2\right)\)
\(=9x^2+6x+1-x^4-x^2+2\)
\(=-x^4+8x^2+6x+3\)
g) \(\left(x^2+1\right)^2-\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x^4+2x^2+1\right)-\left(x^4+2x^2-x^2-2\right)\)
\(=\left(x^4+2x^2+1\right)-\left(x^4+x^2-2\right)\)
\(=x^4+2x^2+1-x^4-x^2+2\)
\(=x^2+3\)
h) \(\left(2x^2-4\right)^2-\left(2x^2+4\right)^2\)
\(=\left(4x^4-16x^2+16\right)-\left(4x^4+16x^2+16\right)\)
\(=4x^4-16x^2+16-4x^4-16x^2-16\)
\(=-32x^2\)
∆ABC có BE là đường phân giác (gt)
∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pythagore)
⇒ BC² - AB² = AC²
= (3 + 5)²
= 64
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
Ta có:
BC² = AB² + AC² (Pythagore)
= 6² + 64
= 100
⇒ BC = 10
vì BE là đường phân giác của tam giác ABC nên ta có:
\(\dfrac{AE}{EC}=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(BC=\dfrac{5}{3}AB\)
áp dụng định lý pythagore vào tam giác ABC ta được:
\(AC^2=AB^2+BC^2\)
tổng độ dài đoạn AC là: 3 + 5 = 8
\(AB^2+BC^2=8^2\\ AB^2+\left(\dfrac{5}{3}AB\right)^2=64\\ AB^2+\dfrac{25}{9}AB^2=64\\ AB^2\cdot\left(1+\dfrac{25}{9}\right)=64\\ AB^2\cdot\dfrac{34}{9}=64\\ AB^2=64:\dfrac{34}{9}=64\cdot\dfrac{9}{34}\\ AB^2=\dfrac{576}{34}\\ AB=\sqrt{\dfrac{576}{34}}\text{≈}4,11\)
độ dài đoạn BC là:
BC² = AC² - AB²
BC² = 64 - 16,8921
BC² = 47,1079
BC = \(\sqrt{47,1079}\) ≈ 6,86
VẬY AB = 4,11; BC =6,86
Đa thức $2x^4-21x^2+1$ không phân tích thành nhân tử bạn nhé.
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)
=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)
=>BC=10(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
Đề sai rồi bạn, theo đề thì \(MN\) là đường trung bình của \(\triangle ABC\)
nên \(MN//BC\Rightarrow\widehat {AMN}=\widehat{NIC}\) (hai góc đồng vị)
Vì vậy nếu \(\widehat{AMN}=\widehat{INC}\) thì \(\widehat{NIC}=\widehat{INC}\)
\(\Rightarrow\triangle INC\) cân tại C
Từ đây xảy ra trường hợp đặc biệt \(\rightarrow\) đề sai
Đề sai rồi bạn