huhu ai đó chỉ tớ bài 1B với a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm
Gọi số máy đội 1, 2 , 3 lần lượt là: \(x\), \(y\), \(z\) (\(x,y,z\in\) N*)
theo bài ra ta có : 3\(x\) = 5\(y\) = 6\(z\)
5\(y\) = 6\(z\) => \(\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{y-z}{6-5}\) = \(\dfrac{1}{1}\)
\(y=6.1=6\); \(z=5.1=5\); \(x\) = 5\(y:3\) = 5.6:3 = 10
Kết luận đội 1 có 10 máy; đội 2 có 6 máy; đội 3 có 5 máy
Gọi a,b,c lần lượt là số máy cày của đội thứ 1, thứ 2, thứ 3( máy, 0<a,b,c
Theo đề bài ta có
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{5}}=\dfrac{c}{\dfrac{1}{6}}\) và b-c=1
Áp dụng t/c DTSBN ta có
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{5}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a-b}{\dfrac{1}{5}-\dfrac{1}{6}}=\dfrac{1}{\dfrac{1}{30}}=30\)
=> a=\(\dfrac{1}{3}\times30=10\left(tm\right)\)
b=\(\dfrac{1}{5}\times30=6\left(tm\right)\)
c=\(\dfrac{1}{6}\times30=5\left(tm\right)\)
Vậy đội 1 có 10 máy cày, đội hai có 6 máy và đội 3 có 5 máy
P(\(x\)) = \(x^4\) - 2\(x^3\) - 3\(x^2\) + 7\(x\) - 2
Q(\(x\)) = \(x^4\) + \(x^3\) - 2\(x\) + 1
P(\(x\)) + Q(\(x\)) = \(x^4\) - 2\(x^3\) - 3\(x^2\) + 7\(x\)- 2 + \(x^4\) + \(x^3\) - 2\(x\) + 7\(x\) - 2
P(\(x\)) + Q(\(x\)) = ( \(x^4\) + \(x^4\)) - (2\(x^3\) - \(x^3\)) - 3\(x^2\) + ( 7\(x\) - 2\(x\)) - (2-1)
P(\(x\)) +Q(\(x\)) =2 \(x^4\) - \(x^3\) - 3\(x^2\)+ 5\(x\) - 1
P(\(x\)) - Q(\(x\)) = \(x^4\) -2 \(x^3\)-3\(x^2\) +7\(x\) - 2 - \(x^4\) - \(x^3\) +2\(x\) - 1
P(\(x\)) -Q(\(x\)) = (\(x^4\) - \(x^4\)) - (2\(x^3\) + \(x^3\)) - 3\(x^2\) + ( \(7x+2x\)) - ( 2 + 1)
P(\(x\)) -Q(\(x\)) = - 3\(x^3\) - 3\(x^2\)+ 9\(x\) - 3
\(4x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Mà \(\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\Rightarrow\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=64\\z^2=100\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(x;y;z\right)=\left(6;8;10\right)\\\left(x;y;z\right)=\left(-6;-8;-10\right)\end{matrix}\right.\)