`Tìm m để đa thức f(x)= ( m-1 )x2 - 3mx + 2 không có nghiệm x= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(N=\dfrac{1}{|x-2|+3}\)
Do : \(|x-2|\ge0\) nên để N có GTLN
\(\Leftrightarrow|x-2|+3\) có GTNN
mà : \(|x-2|+3\ge3\)
\(\Rightarrow GTLN\left(N\right)=\dfrac{1}{3}\)
Dấu bằng xảy ra khi x bằng 2.
Đáp án:a) Xét 2 tam giác ABD và ACD có:
góc BAD = góc CAD( AD là tia phân giác của tg ABC)
AB= AC( tg ABC cân tại A)
góc ABC= góc ACB( tg ABC cân tại A)
=> tg ABD = ACD(gcg)
b) xét ABM và CGM
=> 2 tg bằng nhau theo TH (cgc)
=> AP=CG
c)Ta có : MG = MP (1)
Ta lại có: PAM = GCM(cmt)
mà GCM = GAM ( tg AGC cân tại G do tính chất đường trung tuyến)
=> AM là tia phân giác của tg GAP(2)
(1),(2)=> AM vừa là đường trung tuyến vừa là tia phân giác của tg PAG
Hay tg PAG là tg cân
Hình bạn tự vẽ nha
\(a,N\left(x\right)=x^2+3x^4-2x-x^2+2x^3=3x^4+2x^3+\left(x^2-x^2\right)-2x\\ =3x^4+2x^3-2x\\ P\left(x\right)=-8+5x-6x^3-4x+6=-6x^3+\left(5x-4x\right)+\left(-8+6\right)\\ =-6x^3+x-2\)
Bậc của N(x) là 4
Bậc của P(x) là 3
\(b,P\left(x\right)+N\left(x\right)=3x^4+2x^3-2x-6x^3+x-2\\ =3x^4+\left(2x^3-6x^3\right)+\left(-2x+x\right)-2\\ =3x^4-4x^3-x-2\)
\(c,B\left(x\right)=-2x^2\left(x^3-2x+5x^2-1\right)\\ =\left(-2x^2\right).x^3+\left(-2x^2\right).\left(-2x\right)+\left(-2x^2\right).5x^2+\left(-2x^2\right).\left(-1\right)\\ =-2x^5+4x^3-10x^4+2x^2\\ =-2x^5-10x^4+4x^3+2x^2\)
F(\(x\)) = (m-1) \(x^2\) - 3m \(x\) + 2
\(x\) = 1 là nghiệm của F(\(x\)) ⇔ F(1) = 0
⇒ F(1) = (m-1)\(\times\) 12 - 3m \(\times\) 1 + 2 = 0
m-1 - 3m + 2 = 0
-2m + 1 = 0
2m = 1
m = \(\dfrac{1}{2}\)
m = \(\dfrac{1}{2}\) thì F(\(x\)) có nghiệm \(x\) = 1
Vậy để F(\(x\)) không có nghiệm \(x\) = 1 thì m # \(\dfrac{1}{2}\)