Giải phương trình sau:
|x^2-1|=2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{5z-7y}{3}=\frac{7x-3z}{5}=\frac{3y-5x}{7}=\frac{3\left(5z-7y\right)}{9}=\frac{5\left(7x-3z\right)}{25}=\frac{7\left(3y-5x\right)}{49}\)
\(=\frac{15z-21y}{9}=\frac{35x-15z}{25}=\frac{21y-35x}{49}=\frac{15z-21y+35x-15z+21y-35x}{9+25+49}=0\)
\(\Rightarrow\hept{\begin{cases}5z-7y=0\\7x-3z=0\\3y-5x=0\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{7}}\) (đpcm)
thoy mk giải lại nhá
\(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1^2+1^2+1^2\right)>=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=1^2=1\)(bđt bunhiakopski)
dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{3}\)
\(\Rightarrow3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)>=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=\frac{1}{3}\)
\(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1^2+1^2+1^2\right)>=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=1^2=1\)
dấu = xảy ra khi \(\frac{1}{x^2}=\frac{1}{y^2}=\frac{1}{z^2}=\frac{1}{3^2}=\frac{1}{9}\)
\(\Rightarrow3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)>=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=\frac{1}{3}\)
BPT\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1\right)-\left(2017x^2+2018\right)\left(4-5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1-4+5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(7x-5\right)\ge0\)
DO 2017x2+2018 luôn luôn lớn hơn 0
ĐỂ B PT \(\ge\)0\(\Leftrightarrow7x-5\ge0\)
\(\Leftrightarrow x\ge\frac{5}{7}\)
vậy ...........
Ta có để phuowgn trình có nghiệm thì \(2x+1\ge0\Leftrightarrow x\ge\frac{-1}{2}\)
Khi đó pt\(\orbr{\begin{cases}x^2-1=2x-1\\x^2-1=-1-2x\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2-2x=0\\x^2+2x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\left(x-2\right)=0\\x\left(x+2\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x+2=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình đã cho là:\(S=\left(0;2\right)\)
Giải xong rồi đấy, nhớ k cho mình nhé
giúp mình với