1, Lập pt bậc hai có hai nghiệm là 2+căn 3 và 2-căn 3
2, Cho pt x3 + m(x-2) - 8 = 0 (1)
a, giải pt khi m = -4
b, tìm m để pt (1) có 3 nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương \(a^4+b^4+c^4\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)-abc\left(a+b+c\right)\)
mà \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)(BĐT cauchy)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(cần chứng minh)
ÁP dụng bất đẳng thức bunyakovsky:
\(3\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)
mà \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)(hệ quả BĐT cauchy)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(đpcm)
dấu = xảy ra khi a=b=c
không giúp được cho bạn rùi hỏi ng khác ý cố lên mik dốt toán lắm
a) Chứng minh tam giác MAB đồng dạng tam giác MFC
b) Chứng minh góc \(\widehat{BKF}=\widehat{FAD}\)
c) E là trực tâm của \(\Delta MBC\)suy ra MH vuông góc BC ... suy ra tứ giác MDBH là hình thang
d) \(\Delta BHE\)đồng dạng \(\Delta BAC\)... suy ra BE.BA=BC.BH
\(\Delta CHE\)đồng dạng \(\Delta CFB\)... suy ra CE.CF=CB.CH
BE.BA+CE.CF=BC.BH+CB.CH=BC(BH+CH)=BC.BC=BC^2
Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)
Tổng và tích hai nghiệm xa, xb là:
xa + xb = -m
xa . xb = -1
Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2
x^3-4(x+2)=0
x^3-4x+8-8=0
x^3-4x=0
x(x^2-4)=0
=> x=0 va x^2=4
x=0 va x = -2 va 2
vậy phương trình có 3 nghiệm
nhanh nhanh nên thứ 2 m thu rồi