1)Với hai số dương x và y, chứng minh rằng \(\frac{\left(x+y\right)^2}{2}+\frac{x+y}{4}\ge x\sqrt{y}+y\sqrt{x}\)
Đẳng thức xảy ra khi nào ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{\frac{x^2}{2}+x+1+\frac{x^2}{2}}{x^2+2x+2}\)
=\(\frac{1}{2}\)+\(\frac{\frac{x^2}{2}}{x^2+2x+2}\)
=\(\frac{1}{2}\)+\(\frac{x^2}{2x^2+4x+4}\)\(\ge\)\(\frac{1}{2}\)
"="<=>x=0
Vậy Min y = \(\frac{1}{2}\)
oh, bunhia copxki kìa :V lâu lắm mới thấy đăng toán lớp 9
a) \(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2d^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)(luôn đúng)
b) từ câu a ta có:
\(\left(ac+bd\right)^2+\left(ac-bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Đẳng thức xảy ra \(\Leftrightarrow\left(ac-bd\right)^2=0\Leftrightarrow ac=bd\)
Nửa chu vi ban đầu là:
90:2=45(m)
Chu vi sau khi giảm chiều rộng và chiều dài là:
90-18=72(m)
Nửa chu vi sau khi giảm chiều rộng và chiều dài là:
72:2=36(m)
Giảm đi tất cả số m là:
45-36=9(m)
Chiều dài giảm số m là
9-4=5(m)
Chiều dài mảnh đất là
5:20%=25(m)
Chiều rộng mảnh đất là
45-25=20(m)
Vậy.......
Chú bạn học tốt
Cách khác:
\(\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)}{4}\ge2xy+\frac{x+y}{4}\)
\(=\frac{4xy+x+4xy+y}{4}=\frac{x\left(4y+1\right)+y\left(4x+1\right)}{4}\)
\(\ge\frac{4x\sqrt{y}+4y\sqrt{x}}{4}=x\sqrt{y}+y\sqrt{x}\)
Dấu = xảy ra khi \(x=y=\frac{1}{4}\)
\(\frac{1}{2}\left(x+y\right)\left(x+y+\frac{1}{2}\right)=\frac{1}{2}\left(x+y\right)\left(x+\frac{1}{4}+y+\frac{1}{4}\right)\)
Áp dụng bất đẳng thức cauchy:
\(x+y\ge2\sqrt{xy}\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{x}{4}}=\sqrt{x}\)
\(y+\frac{1}{4}\ge2\sqrt{\frac{y}{4}}=\sqrt{y}\)
do đó \(VT\ge\frac{1}{2}.2.\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=x\sqrt{y}+y\sqrt{x}\)(đpcm)
Dấu = xảy ra khi \(x=y=\frac{1}{4}\)