Gọi a, b, c là độ dài 3 cạnh của tam giác ABC, thỏa mãn:
ab/(b+c) + bc/(a+c) + ac/(a+b) = ac/(b+c) + ab/(a+c) + bc/(a+b)
Chứng minh tam giác ABC cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/x - 1/(x+1) = 1/x(x+1)
<=> pcm \(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm \(\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm 1/x(x+1) = 1/x(x+1)
Đây là điều luôn đúng nên ta có điều phải chứng minh
Chú ý : Chữ pcm là phải chứng minh
Ta có : \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}\)
\(+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
Áp dụng chứng minh trên ta có :
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
=1/x
Bài làm
a) Xét tam giác DAB và tam giác CBA có:
AD = BC ( giả thiết )
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
=> Tam giác DAB = tam giác CBA ( c.g.c )
=> BD = AC ( hai cạnh tương ứng )
b) Vì tam giác DAB = tam giác CBA ( cmt )
=> \(\widehat{ABD}=\widehat{BAC}\)( hai góc tương ứng )
Ta có: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{BAC}+\widehat{CAD}=\widehat{BAD}\)
Mà \(\widehat{ABD}=\widehat{BAC}\)( cmt )
\(\widehat{ABC}=\widehat{BAD}\)( giả thiết )
=> \(\widehat{DBC}=\widehat{CAD}\)
Xét tam giác CAD và tam giác DBC có:
BC = AD ( giả thiết )
\(\widehat{DBC}=\widehat{CAD}\)( cmt )
BD = AC ( cmt )
=> Tam giác CAD = tam giác DBC ( c.g.c )
=> \(\widehat{ADC}=\widehat{BCD}\)( hai góc tương ứng )
c) Gọi O là giao điểm của BD và AC
Xét tam giác OAB có:
\(\widehat{ABD}=\widehat{BAC}\)( cmt )
=> Tam giá OAB cân tại O
=>\(\widehat{ABD}+\widehat{BAC}=180^0-\widehat{AOB}\)
=> \(2\widehat{ABD}=180^0-\widehat{AOB}\) (1)
Xét tam giác OCD có:
\(\widehat{BDC}=\widehat{ACD}\)( Do tam giác CAD = tam giác DBC )
=> Tam giác OCD cân tại O
=> \(\widehat{BDC}+\widehat{ACD}=180^0-\widehat{DOC}\)
=> \(2\widehat{BDC}=180^0-\widehat{DOC}\) (2)
Ta có: \(\widehat{AOB}=\widehat{DOC}\) ( hai góc đối ) (3)
Từ (1), (2) và (3) => \(2\widehat{ABD}=2\widehat{BDC}\) => \(\widehat{ABD}=\widehat{BDC}\)
Mà hai góc này ở vị trí so le trong
=> AB // CD ( đpcm )
a) Xét tam giác DAB và tam giác CAB có :
AD = BC
\(\widehat{DAB}=\widehat{CBA}\)
Chung AB
\(\Rightarrow\)tam giác DAB = tam giác CAB ( c-g-c )
\(\Rightarrow AC=DB\)( 2 cạnh tương ứng )
b ) Xét tam giác ADC và tam giác BCD có :
AD = BC
AC = BD
chung CD
\(\Rightarrow\)tam giác ADC = tam giác BCD ( c-c-c )
\(\Rightarrow\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )
\(x^2+2x+1=0\)
\(\Leftrightarrow x^2+x+x+1=0\)
\(\Leftrightarrow x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Rightarrow x=-1\)
\(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất
=> 1/x-5=-1
=>x-5=-1
=>x=4
Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4