Chứng minh (12 + 22) (22 + 32)...(20182 + 20192) là tổng 2 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: \(a^{2018}+b^{2018}=a^{2019}+b^{2019}\)
\(\Leftrightarrow a^{2019}-a^{2018}+b^{2019}-b^{2018}=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)+b^{2018}\left(b-1\right)=0\) (1)
Vì \(a^{2019}+b^{2019}=a^{2020}+b^{2020}\)
\(\Leftrightarrow a^{2020}-a^{2019}+b^{2020}-b^{2019}=0\)
\(\Leftrightarrow a^{2019}\left(a-1\right)+b^{2019}\left(b-1\right)=0\) (2)
Từ (1) và (2)
\(\Rightarrow a^{2018}\left(a-1\right)+b^{2018}\left(b-1\right)=a^{2019}\left(a-1\right)+b^{2019}\left(b-1\right)\)
\(\Leftrightarrow a^{2019}\left(a-1\right)-a^{2018}\left(a-1\right)+b^{2019}\left(b-1\right)-b^{2018}\left(b-1\right)=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)\left(a-1\right)+b^{2018}\left(b-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)^2+b^{2018}\left(b-1\right)^2=0\)
Vì: \(\hept{\begin{cases}a^{2018}\left(a-1\right)^2\ge0\\b^{2018}\left(b-1\right)^2\ge0\end{cases}}\) mà tổng của 2 số này lại là 0
=> Mỗi số hạng này sẽ có tổng là 0
Ta có:
\(a^{2018}\left(a-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}a^{2018}=0\\a-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}}\)
Tương tự với b thì cũng có: b = 0, b = 1
Vậy có 4 cặp a,b thỏa mãn:
(a,b) ={ (0,0) ; (0,1) ; (1,0) ; (1,1)
Vậy tổng của a + b có thể là 0,1,2
Ta có:
\(a^{2018}+b^{2018}+a^{2020}+b^{2020}=2a^{2019}+2b^{2019}\)
\(\Leftrightarrow\left(a^{2018}-2a^{2019}+a^{2020}\right)+\left(b^{2018}-2b^{2019}+b^{2020}\right)=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)^2+b^{2018}\left(b-1\right)^2=0\)
Ta thấy rằng VT \(\ge\)0 nên dấu = xảy ra khi
\(\left(a,b\right)=\left(0,0;0,1;1,0;1,1\right)\)
Ta có :
\(\left(x-5\right)\left(6x+1\right)-\left(2x-3\right)\left(3x+4\right)-x=6\)
\(\Rightarrow\left(6x^2-30x+x-5\right)-\left(6x^2-9x+8x-12\right)-x=6\)
\(\Rightarrow6x^2-29x-5-\left(6x^2-x-12\right)-x=6\)
\(\Rightarrow6x^2-29x-5-6x^2+x+12-x=6\)
\(\Rightarrow\left(6x^2-6x^2\right)+\left(-29x+x-x\right)+\left(12-5\right)=6\)
\(\Rightarrow-29x+7=6\)
\(\Rightarrow-29x=6-7\)
\(\Rightarrow-29x=-1\)
\(\Rightarrow x=\frac{1}{29}\)
Vậy \(x=\frac{1}{29}\)
Ta có :
\(a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ba+b\)
\(=2ab+a+b\)
\(=2.1+a+b\)
\(=2+a+b\left(1\right)\)
Lại có :
\(\left(a+1\right)\left(b+1\right)\)
\(=ab+b+a+1\)
\(=1+b+a+1\)
\(=2+a+b\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(đpcm\right)\)
Gọi quãng đường AB là : x (x > 0)
Vận tốc lượt đi là : \(\frac{x}{6}\)
Vận tốc lượt về là : \(\frac{x}{7}\)
Vận tốc đi lớn hơ nvaanj tốc về là : 2 x 2 = 4 (km/h)
Ta có : \(\frac{x}{6}-\frac{x}{7}=4\)
\(\Leftrightarrow7x-6x=168\)
\(\Leftrightarrow x=168\)
Vây quãng AB dài 168 km
Gọi phân số ban đầu là \(\frac{a}{b}\left(a;b\ne0\right)\)
Theo bài ra ta có :
\(\frac{a+5}{b+5}=\frac{2}{3}\)
\(\Rightarrow3\left(a+5\right)=2\left(b+5\right)\)
\(\Rightarrow3a+15=2b+10\)
Mà \(b=a+5\)
\(\Rightarrow3a+15=2\left(a+5\right)+10\)
\(\Rightarrow3a+15=2a+10+10\)
\(\Rightarrow3a+15=2a+20\)
\(\Rightarrow3a-2a=20-15\)
\(\Rightarrow a=5\)
DO \(b=a+5\)
\(\Rightarrow b=5+5=10\)
Vậy phân số ban đầu là : \(\frac{5}{10}\)
~ Ủng hộ nhé
1/x ĐKXĐ là x khác 0;
2/x(x-1) ĐKXĐ là x khác 0;1
4/5x-10 ĐKXĐ là x=2
2x+4/2x-4 ĐKXĐ là x khác 2
x+1/x-1 ĐKXĐ là x khác 1