Giải phương trình
a) \(\sqrt{9\left(x-1\right)}=21\)
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
Giúp mình vs nhé! Cảm ơn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\frac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\frac{41.289}{164}}=\sqrt{\frac{289}{4}}=\frac{17}{2}\)
b) tương tự ý a
c) \(\left(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\right)^2=7+4\sqrt{3}+7-4\sqrt{3}-2.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}\)
\(=14-2\sqrt{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=14-2\sqrt{49-48}\)
\(=14-2.1=12\)
\(\Rightarrow\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{12}=2\sqrt{3}\)
\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\left|\frac{x^2}{y^2}\right|=-5\)
\(5xy\sqrt{\frac{x^2}{y^6}}=5\sqrt{\frac{x^4y^2}{y^6}}=5\sqrt{\frac{x^4}{y^4}}=5\)
\(=\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\sqrt{\sqrt{5}^2+2\sqrt{5}+1}\)
\(=\left(\sqrt{5}+1\right)\sqrt{\left(\sqrt{5}+1\right)^2}=\left(\sqrt{5}+1\right)\left(\sqrt{5}+1\right)\)
\(=\left(\sqrt{5}+1\right)^2=5+2\sqrt{5}+1=6+\sqrt{5}\)
\(\sqrt{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=50\)
Vậy x = 50
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=\left(2+3\right)\sqrt{3}\)
\(\Leftrightarrow x+1=5\)
\(\Leftrightarrow x=4\)
Vậy x = 4
\(\sqrt{9\left(x-1\right)}=21\\9\left(x-1\right)=21^2\\x-1=49\\ x=48 \)\(\sqrt{3}x+\sqrt{3}=2\sqrt{3}+3\sqrt{3}\\ 0=\sqrt{3}\left(2+3-1-x\right)\\ 0=\sqrt{3}\left(4-x\right)\\ x=4\\ \)