Rút gọn biểu thức:
(x+2)^2-2(x+2)(x-3)+(x-3)^2
(x^2-5)
(x+y)^2-(x-y)^2
Giúp mk nha m.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)
= x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5
= (x^4y-x^4y)+(x^3y^2-x^3y^2)+(x^2y^3)+(xy^4-xy^4)+x^5-y^5
= 0+0+0+0+x^5-y^5
= x^5-y^5
Vay (x-y)(x^4+x^3y+x^2y^2+xy^3+y^4) = x^5-y^5
\(\Leftrightarrow\left(x+1\right)^2+6y^2+2-4y\left(x+2\right)\ge0\)
\(\Leftrightarrow2(x^2+2x+1+6y^2+2-4xy-8y)\ge0\)
\(\Leftrightarrow2x^2+12y^2-8xy+4x-16y+6\ge0\)
\(\Leftrightarrow2\left(x^2-4xy+4y^2\right)+4\left(x-2y\right)+2+\left(4y^2-8y+4\right)\)
\(\Leftrightarrow2\left(x-2y\right)^2+4\left(x-2y\right)+2+4\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow2\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+4\left(y-1\right)^2\ge0\)
\(\Leftrightarrow2\left(x-2y+1\right)^2+4\left(y-1\right)^2\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi y=1,x=1
Gọi : tg từ khi 2 đội bắt đầu làm đến khi số cây còn lại phải trồng của đội I gấp đôi số cây còn lại phải trồng của đọi II là : x(h) (x>0)
Trong x (h): Đội I trồng đc : 120x(cây)
Đội II trồng đc : 160 (cây)
Sau x(h):Đội I còn phải trồng : 1000 - 120x (cây)
Đội II còn phải trồng :950 -160x (cây)
Theo đề bài ta có phương trình:
\(1000-120x=2\left(950-160x\right)\)
\(\Leftrightarrow\) \(1000-120x=1900-320x\)
\(\Leftrightarrow\) \(200x=900\)
\(\Leftrightarrow\) \(x=4,5\left(tmđk\right)\)
Vậy : Sau 4,5 h.......................................
bạn để ý trong ngoăcj có +2b^2c^2 đó bạn
Vì +2b^2c^2 - 4b^2c^2 = -2b^2c^2
\(B=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)
\(=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)
\(=\left(a^2-b^2-c^2\right)-\left(2bc\right)^2\)
\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)
\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)
Vì a,b,c là độ dài 3 cạnh tam giác nên:
b+c>a => a-(b+c) < 0 => a-b-c < 0
a+b+c > 0
a+c>b => a+c-b > 0 => a-b+c > 0
a+b>c => a+b-c > 0
Do đó (a-b-c)(a+b+c)(a-b+c)(a+b-c) < 0 hay B<0 (đpcm)
x=-10,y=2 gia tri cua bieu thuc la -1008
x=-1,y=0 gia tri cua bieu thuc la -1
x=2,y=-1 gia tri cua bieu thuc la 7
bạn làm sai câu 3 rồi, đáp án phải lad 9 mới đúng
Mong bạn thông cảm vì mk đã k nhầm ^_^!
Thay x+y+z=1 vào biểu thức C, ta được:
\(C=\left(x+y+z-x\right)\left(x+y+z-y\right)\left(x+y+z-z\right)\)
\(C=\left(y+z\right)\left(z+x\right)\left(x+y\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Ta có: \(x^3+y^3+z^3=\frac{1}{9}\Leftrightarrow\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{1}{9}\)
Thay x+y+z=1. Suy ra \(1-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{1}{9}\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{9}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{9.3}=\frac{8}{27}\)
\(\Rightarrow C=\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{27}.\)
ĐS:...
a, \(97.13+130.13\)
\(=13\left(97+130\right)\)
\(=13.227\)
\(=2951\)
b, \(86.153-530.8,6\)
\(=86.153-53.10.8,6\)
\(=86.153-53.86\)
\(=86\left(153-53\right)\)
\(=86.100\)
\(=8600\)
trả lời:
a) 97.13 + 130.13
= 13.( 97 + 130 )
= 13. 227
= 2951
b) 86.153 - 530.8,6
= 86.153 - 53.10.8,6
=86. 153 - 53.86
= 86. ( 153 - 53 )
= 86.100
= 8600
học tốt!
Đặt \(\hept{\begin{cases}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{cases}}\)
\(\Rightarrow a^2+4b^2=5ab\)
\(\Leftrightarrow\left(b-a\right)\left(4b-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=4b\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt[3]{65+x}=\sqrt[3]{65-x}\\\sqrt[3]{65+x}=4\sqrt[3]{65-x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}65+x=65-x\\65+x=4\left(65-x\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=39\end{cases}}\)
\(a,=\left[\left(x+2\right)-\left(x-3\right)\right]^2=\left(x+2-x+3\right)^2=5^2=25\)
\(b=x^2-5\)
\(c=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)