Hai người thợ cùng làm chung một công việc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cho hai số nguyên a và d, với d ≠ 0
Khi đó tồn tại duy nhất các số nguyên q và r sao cho a = qd + r và 0 ≤ r < | d |, trong đó | d | là giá trị tuyệt đối của d.
Các số nguyên trong định lý được gọi như sau
- q được gọi là thương khi chia a cho d. Đôi khi nó còn được gọi là thương hụt.
- r được gọi là dư khi chia a cho d
- d được gọi là số chia
- a được gọi là số bị chia
Phép toán tìm q và r được gọi là phép chia với dư.
Do đó: số dư không âm
\(\left(5+2\sqrt{6}\right)\left(49+20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}=\left(5+2\sqrt{6}\right)^3\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left(\sqrt{3}+\sqrt{2}\right)^6\left(\sqrt{3}-\sqrt{2}\right)=\left(\sqrt{3}+\sqrt{2}\right)^5.1=\left(\sqrt{3}+\sqrt{2}\right)^5\)
$\left(5+2\sqrt{6}\right)\left(49+20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}
=\left(5+2\sqrt{6}\right)^3\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}
=\left(\sqrt{3}+\sqrt{2}\right)^6\left(\sqrt{3}-\sqrt{2}\right)
=\left(\sqrt{3}+\sqrt{2}\right)^5.1
=\left(\sqrt{3}+\sqrt{2}\right)^5$
bạn đặt cả biểu thức là A,,,hãy bình phương A lên,,,bạn sẽ thấy rất kì diệu
\(BDT\Leftrightarrow x+y+z-xyz\le2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(x\left(1-yz\right)+\left(y+z\right)\right)^2\le\left(x^2+\left(y+z\right)^2\right)\left(\left(1-yz\right)+1\right)\)
\(=\left(x^2+y^2+z^2+2yz\right)\left(2-2yz+y^2z^2\right)\)
\(=2\left(1+yz\right)\left(2-2yz+y^2z^2\right)\)do \(x^2+y^2+z^2=2\)
\(=4\left(1-y^2z^2\right)+2\left(1+yz\right)y^2z^2\)
\(=4+2y^2z^2\left(yz-1\right)\le4\) do \(yz\le\frac{y^2+z^2}{2}\le\frac{x^2+y^2+z^2}{2}=1\)
\(\left(x\left(1-yz\right)+\left(y+z\right)\right)^2\le4\Rightarrow x\left(1-yz\right)+\left(y+z\right)\le2\)
Hay ta có ĐPCM
[148] 2004+111 cho 11=
=1475789056 khi mu 2004 lên ko chưa kết quả khi +111 chia cho 11
ta đc kết quả là 16651498 du 10
[lưu ý số dư luôn nhỏ hơn số bị chia] hay 10 nhỏ hơn 11
TK CHO MK NHA BẠN
Thì sao!
thế ra sao???????????