\(\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)=A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1^n+2^n+3^n+...+17^n+18^n=1^n+\left(2^n+18^n\right)+\left(3^n+17^n\right)+...+\left(9^n+11^n\right)+10^n..\)
Do n lẻ \(=>2^n+18^n⋮20,3^n+17^n⋮20,...+9^n+11^n⋮20,10^n⋮10\)\(=>2^n+3^n+...+18^n⋮5\)
Mà \(1^n=1:5\)dư 1
=>A chia 5 dư 1
Ta có 3xy+x-y=1
=>3xy+x-y-1=0
<=>3xy=0 và x-y-1=0
Giải hệ 2 phương trình ta có
TH(1)x=0=>y=-1
TH(2)x=0 =>y=1
Vậy phương thức trên có 2 cặp nghiệm
k mk nha
Câu này giải như sau :
Ta có :
\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{a^2+ab+ac+bc}=\sqrt{\left(a+c\right)\left(a+b\right)}\)
\(\Rightarrow\sqrt{2a+bc}\le\frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\left(1\right)\)
tương tự ta có :\(\sqrt{2b+ac}\le\frac{2b+a+c}{2}\left(2\right)\)
\(\sqrt{2c+ac}\le\frac{2c+a+c}{2}\left(3\right)\)
cộng vế với vế 1,2,3 ta được
\(Q\le\frac{3\left(a+b+c\right)}{2}=\frac{3.2}{2}=3\)\(\Rightarrow Q_{max}=3\Leftrightarrow\)dấu "=" (a,b,c) là hoán vị của \(\left(0.1.1\right)\)
\(\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}=A}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{25-3}}\)
\(=\left(\sqrt{3+1}\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{22}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{3-2\sqrt{3}+1}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3+1}\right)\left(\sqrt{3}-1\right)\)
\(=3-1\)
\(=2\)
\(A=2\)
Bài này là rút gọn biểu thức nhé