Cho \(a\ge b\ge c\ge1\)\(Cmr\frac{1}{1+a^3}\)\(+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{1}{1+abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mk hơi làm tắt nha
Đặt \(A=\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+41}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3\left(x+5\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
Nhân chéo ta được:
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x=26\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\left(koTM\right)\\x=-13\left(TM\right)\end{cases}}\)
Vậy nghiệm PT thỏa mãn là -13
Vì cứ 2 số tự nhiên thì tổng của chúng bằng -2x
Vậy dãy số trên có số số hạng là:
( 2015 - 1 ) : 2 + 1 = 1008 ( số hạng )
Dãy trên có số cặp là:
1008 : 2 = 504 ( cặp )
Do đó dãy trên có 504 số -2x
Ta được:\(x-3x+5x-7x+9x-11x+...+2013x-2015x=3024\)
\(\Leftrightarrow\left(-2x\right)+\left(-2x\right)+\left(-2x\right)+....+\left(-2x\right)=3024\)
Mà dãy này có 504 số -2x
\(\Leftrightarrow504.\left(-2x\right)=3024\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\)
Vậy x=-3
Gọi \(c=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\) (có vô số dấu \(\sqrt{ }\))
\(\Rightarrow c^2=6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}=6+c\)
\(\Leftrightarrow c^2-c-6=0\)
\(\Leftrightarrow\left(c-3\right)\left(c+2\right)=0\)
\(\Leftrightarrow c=3\)
Vậy \(a< c=b\)
Vì \(a\ge b\ge c\ge1\) ta có bổ đề
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Lợi dụng cái trên ta được
\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\)
\(\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^4}}\ge\frac{4}{1+\sqrt[4]{a^4b^4c^4}}=\frac{4}{1+abc}\)
PS: Đề sai nên t sửa luôn đề rồi nhé
\(\Rightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)