1,\(F\left(x\right)=ax^2+bx+c\) vs\(G\left(x\right)=cx^2+bx+a\)
CMR:\(F\left(x_0\right)\) thì \(G\left(\frac{1}{x_0}\right)=0\)
2,CMR:\(F\left(x\right)=x^2+4x+10\) không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 2\(a^3\)bc và - 3\(a^5b^3c^2\)trái dấu nên : a\(\ne\)0; b \(\ne0;c\ne0\)
\(2a^3bc.\left(-3a^5b^3c^2\right)< 0\)
\(\Leftrightarrow-6a^8b^4c^3< 0\Leftrightarrow a^8b^4c^3>0\)
\(\Leftrightarrow c^3>0\Leftrightarrow c>0\)( vì \(a^8b^4>0\)với mọi a \(\ne0\); b\(\ne0\))
Vậy c > 0 tức là mang dấu dương
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link bài làm tương tự nhé!
Câu a, b em tự làm nhé nó khá đơn giản
câu c)
Áp dụng định lí pitago cho 2 tam giác vuông IKM và IKP ta có:
\(IK^2=MI^2-MK^2\)
\(IK^2=IP^2-KP^2\)
Cộng vế theo vế ta có;
\(2IK^2=MI^2-MK^2+IP^2-KP^2=\left(MI^2+IP^2\right)-MK^2-KP^2=MP^2-MK^2-KP^2\)( Áp dụng định lí pita go cho tam giác MIP)
Mà MP=MN
=> Điều p cm
Lấy điểm D đối xứng với E qua M
Xét tam giác EBM và tam giác DCM có:
BM=MC ( M là trung điểm BC)
MD=ME
\(\widehat{BME}=\widehat{CMD}\)( đối đỉnh)
=> \(\Delta EBM=\Delta DCM\)( c-gc)
=> BE=DC (1)
và \(\widehat{BEM}=\widehat{CDM}\)(2)
Dễ dàng chứng minh đc \(\Delta AEN=\Delta AFN\)
=> \(\widehat{AEN}=\widehat{AFN}=\widehat{DFC}\)(3)
Từ (2), (3)
=> \(\widehat{DFC}=\widehat{MDC}=\widehat{FDC}\)
=> tam giác FDC cân => CF=CD (4)
Từ (1) , (4) => BE=CF
Ta có AE=AB+BE
AF=AC-FC
Cộng theo vế => AE+AF=AB+AC+BE-CF MÀ AE=AF(\(\Delta AEN=\Delta AFN\)), BE=CF
=> 2AE=AB+AC
=> đpcm
f(x0)=?.
2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6
Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm
ahhii