1 thùng nước có đường kính 2m, chiều dài 3m hỏi thùng đó chưa bao nhiêu khối nước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy.0\)
\(=0-0=0\)
Vậy \(x^3+y^3+z^3=3xyz\)
\(\left(x+3\right)\left(x-1\right)-x\) \(\left(x-5\right)=11\)
\(x^2-x+3x-3\) \(-x^2+5x=11\)
\(7x-3=11\)
\(7x=14\)
\(x=2\)
P \(=\left(x+3y\right)\) \(\left(x^2-3xy+9^2\right)\)
\(=\left(\frac{1}{2}+3.\frac{1}{2}\right)\) \(\left(\frac{1}{4}-3.\frac{1}{2}.\frac{1}{2}+81\right)\)
\(=2.\frac{161}{2}\)
\(=161\)
5(x - 2)(x + 2) - 1/2(6-8x)2 + 17
= 5(x2 - 4) - 1/2(36 - 96x + 64x2) + 17
= 5x2 - 20 - 18 + 48x - 32x2 + 17
= -27x2 + 48x - 21
\(5\left(x-2\right)\left(x+2\right)-\frac{1}{2}\left(6-8x\right)^2+17\)
= \(5\left(x^2-4\right)-\frac{1}{2}\left[2\left(3-4x\right)\right]^2+17\)
= \(5x^2-20-2\left(3-4x\right)^2+17\)
= \(5x^2-3-2\left(3-4x\right)^2\)
= \(5x^2-3-2\left(9-24x+16x^2\right)\)
= \(5x^2-3-18+48x-32x^2\)
= \(-27x^2+48x-21\)
= \(-3\left(9x^2-16x+7\right)\)
Ta có
\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1
\(1=1\cdot1=-1\cdot\left(-1\right)\)
\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)
Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)
=> Ta thấy A=1 hoặc A=-1 là không thể
=> A=-3 hoặc A=3
Đặt phép tính cho từng trường hợp ta được
\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)
\(x^2+y^2+4z^2+2x+2y+4z+3=0\)
\(\Leftrightarrow\)\(\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(4z^2+4z+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)^2+\left(y+1\right)^2+\left(2z+1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+1=0\\2z+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-1\\z=-\frac{1}{2}\end{cases}}\)
Vậy....
\(\hept{\begin{cases}AB=AC\\BM=CN\end{cases}}\Rightarrow AN=AM\)
\(\Rightarrow\frac{AM}{AB}=\frac{A}{AC}\)
\(\Rightarrow MN//BC\text{ mà }NC=BM\)
=> MNCB là hình thang cân
Ta có: \(\Delta ABC\) cân tại A => AB = AC
Mà BM = CN (gt)
=> AB - MB = AC - CN
=> AM = AN
=> M là trung điểm của AB (1)
N là trung điểm của AC (2)
Trong tam giác ABC có (1) và (2)
=> MN là đường trung bình của tam giác ABC
=> MN // BC
=> BMNC là hình thang
\(\left(9-x\right)\left(x-2\right)\left(6-x\right)-x\left(1-17x^2\right)+24=0\) 0
TIM X