Biết A=x^2+y^2 ; B=(7x)^2+(-7y)^2 và x ,ykhông đồng thời bằng 0 .Tính tỉ số A/B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(x+\frac{1}{x}=a;y+\frac{1}{y}=b\)
\(\Leftrightarrow\hept{\begin{cases}a+b=4\\\left(x^2+2+\frac{1}{x^2}\right)\end{cases}+\left(y^2+2+\frac{1}{y^2}\right)=8}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=4\\a^2+b^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=16\\a^2+b^2=8\end{cases}}}\)
\(\Leftrightarrow2ab=8\Leftrightarrow ab=4\)
a;b sẽ là nghiệm của phương trình:
X2-4X+4=0
<=>(X-2)2=0
<=>X=2
<=>a=b=2
\(\Leftrightarrow x+\frac{1}{x}=y+\frac{1}{y}=2\)
Giải phương trình=>x=y=1
Vậy nghiệm của hê phương trình:(x;y)=(1;1)
Mình có cách khác là dùng BĐT để giải
ĐK: x, y khác 0
Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) với mọi a, b thực. Đẳng thức xảy ra \(\Leftrightarrow\) a = b
\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{\left(x+y\right)^2}{2}+\frac{\left(\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{4}=\frac{4^2}{4}=4\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\x+y+\frac{1}{x}+\frac{1}{y}=4\end{cases}}\) \(\Leftrightarrow\) \(x=y=1\)
Vậy nghiệm của HPT là (x;y) = (1;1)
Ta có :
\(\left|a+b\right|< \left|a-b\right|\)
\(\Leftrightarrow\hept{\begin{cases}0< \left|a+b\right|\\0< \left|a-b\right|\end{cases}}\Leftrightarrow\hept{\begin{cases}0< a+b\\0< a-b\end{cases}}\Leftrightarrow\hept{\begin{cases}-a< b\\b< a\end{cases}}\Rightarrow\hept{\begin{cases}a>b\\b< a\end{cases}}\Rightarrow a>b\)
ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng
Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.
Ta có :
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
<=> \(a+b-2\sqrt{ab}\ge0\)
<=> \(a+b\ge2\sqrt{ab}\)
<=> \(\frac{a+b}{2}\ge\sqrt{ab}\)
Bạn không được đăng những câu hỏi không liên quan đến toán trên hỏi đáp
mik ms tham ra nên k bik nhiều mong mn tha lỗi Nguen Thang Hoang