K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

đặt \(x+\frac{1}{x}=a;y+\frac{1}{y}=b\)

\(\Leftrightarrow\hept{\begin{cases}a+b=4\\\left(x^2+2+\frac{1}{x^2}\right)\end{cases}+\left(y^2+2+\frac{1}{y^2}\right)=8}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=4\\a^2+b^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=16\\a^2+b^2=8\end{cases}}}\)

\(\Leftrightarrow2ab=8\Leftrightarrow ab=4\)

a;b sẽ là nghiệm của phương trình:

X2-4X+4=0

<=>(X-2)2=0

<=>X=2

<=>a=b=2

\(\Leftrightarrow x+\frac{1}{x}=y+\frac{1}{y}=2\)

Giải phương trình=>x=y=1

Vậy nghiệm của hê phương trình:(x;y)=(1;1)

25 tháng 6 2017

Mình có cách khác là dùng BĐT để giải

ĐK: x, y khác 0

Áp dụng BĐT  \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)   với mọi a, b thực. Đẳng thức xảy ra  \(\Leftrightarrow\)  a = b

\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{\left(x+y\right)^2}{2}+\frac{\left(\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{4}=\frac{4^2}{4}=4\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\x+y+\frac{1}{x}+\frac{1}{y}=4\end{cases}}\)   \(\Leftrightarrow\)   \(x=y=1\)

Vậy nghiệm của HPT là (x;y) = (1;1)

24 tháng 6 2017

Ta có :

\(\left|a+b\right|< \left|a-b\right|\)

\(\Leftrightarrow\hept{\begin{cases}0< \left|a+b\right|\\0< \left|a-b\right|\end{cases}}\Leftrightarrow\hept{\begin{cases}0< a+b\\0< a-b\end{cases}}\Leftrightarrow\hept{\begin{cases}-a< b\\b< a\end{cases}}\Rightarrow\hept{\begin{cases}a>b\\b< a\end{cases}}\Rightarrow a>b\)

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

24 tháng 6 2017

Ta có :

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

<=> \(a+b-2\sqrt{ab}\ge0\)

<=> \(a+b\ge2\sqrt{ab}\)

<=> \(\frac{a+b}{2}\ge\sqrt{ab}\)

24 tháng 6 2017

Bạn không được đăng những câu hỏi không liên quan đến toán trên hỏi đáp

24 tháng 6 2017

mik ms tham ra nên k bik nhiều mong mn tha lỗi Nguen Thang Hoang

24 tháng 6 2017

1. Sai đề
2. Vô nghiệm 
((: 

24 tháng 6 2017

đêf chinhs xacs luôn đaáy bạn