Cho tam giác ABC có B=450, C=360, bc=10 cm.Tính AB,AC?
Mấy ad tính giùm mình nhé. Cảm ơn he
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)
\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)
cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=2
Vậy minA=3/2 khi a=b=c=2
B=\(3\left(x-\frac{2}{3}\sqrt{x}\right)=3\left(x-2\cdot\frac{1}{3}\sqrt{x}+\frac{1}{9}\right)\) \(-\frac{1}{3}\)
\(=3\left(\sqrt{x}-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\) dau = xay ra \(\Leftrightarrow\sqrt{x}=\frac{1}{3}\Leftrightarrow x=\frac{1}{9}\)
vậy min B =\(-\frac{1}{3}\)
biết 2n+1 và 3n+1 là hai số chính phương.Chứng minh rằng n chia hết cho 40 - Số học - Diễn đàn Toán học
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath