gọi a = 1/1.2^2 + 1/2.3^2 + 1/3.4^2 + ... + 1/49.50^2; b = 1/2^2 + 1/3^2 + ... + 1/50^2. cmr a < 1/2 < b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk, c=dk$
Khi đó:
$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$
$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$
Từ $(1); (2)$ ta có đpcm.
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
\(\dfrac{-3}{26}+2\dfrac{4}{69}\)
\(=\dfrac{-3}{26}+\dfrac{142}{69}\)
\(=\dfrac{-3.69}{26.69}+\dfrac{142.26}{26.69}\)
\(=\dfrac{-207+3692}{1794}\)
\(=\dfrac{3485}{1794}\)
Bài 5 :
a) \(\dfrac{y}{4}=\dfrac{9}{y}\)
\(\Rightarrow y^2=36\left(y\ne0\right)\)
\(\Rightarrow y=\pm6\)
b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)
\(\Rightarrow\left(y+7\right)^2=100=10^2\)
\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)
c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)
\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)
\(\Rightarrow20-25y=3y+6\)
\(\Rightarrow28y=14\)
\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)
Bài 4 :
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)
\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)
\(x+y-2xy=4\)
\(\Rightarrow\left(\sqrt[]{x}-\sqrt[]{y}\right)^2-2^2=0\)
\(\Rightarrow\left(\sqrt[]{x}-\sqrt[]{y}-2\right)\left(\sqrt[]{x}-\sqrt[]{y}+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x}-\sqrt[]{y}-2=0\\\sqrt[]{x}-\sqrt[]{y}+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x}-\sqrt[]{y}=2\\\sqrt[]{x}-\sqrt[]{y}=-2\end{matrix}\right.\) \(\left(x;y\ge0\right)\)
\(TH1:\sqrt[]{x}-\sqrt[]{y}=2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(4;0\right);\left(9;1\right);\left(16;4\right);...\right\}\left(x;y\inℕ\right)\)
\(TH2:\sqrt[]{x}-\sqrt[]{y}=-2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(1;9\right);\left(4;16\right);...\right\}\left(x;y\inℕ\right)\)
Đính chính mình nhầm sorry
\(x+y-2xy=4\)
\(\Rightarrow2x+2y-4xy=8\)
\(\Rightarrow2x-4xy+2y=8\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=8-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=7\)
\(\Rightarrow\left(2x-1\right);\left(1-2y\right)\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(1;-3\right);\left(-3;1\right);\left(4;0\right)\right\}\)
\(B=\dfrac{2n+6}{n-5}=\dfrac{2n-10+16}{n-5}=\dfrac{2\left(n-5\right)+16}{n-5}=2+\dfrac{16}{n-5}\)
Để \(B=2+\dfrac{16}{n-5}\inℤ\)
\(\Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)
\(\Rightarrow n\in\left\{4;6;3;7;1;9;-3;13;-11;21\right\}\)
Có (3x - \(\dfrac{1}{6}\))2 ≥ 0 ∀ x; |2y-6| ≥ 0 ∀ y
=> (3x - \(\dfrac{1}{6}\))2 + |2y-6| ≥ 0 ∀x,y
Mà (3x - \(\dfrac{1}{6}\))2 + |2y-6| ≤ 0
=> (3x - \(\dfrac{1}{6}\))2 = 0; |2y - 6| = 0
=> x = \(\dfrac{1}{18}\); y = 3;
=> A = \(\left(\dfrac{1}{18}\right)^2\) + 32 = \(9\dfrac{1}{324}\)