cmr\(B=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| 4x - 1 | + 4x =5
TH1: \(4x-1\ge0\)
\(4x-1+4x=5\)
\(4x+4x=5+1\)
\(8x=6\)
\(x=\frac{3}{4}\)( thỏa mãn \(4x-1\ge0\))
TH2: 4x - 1 <0
\(-\left(4x-1\right)+4x=5\)
\(-4x+1+4x=5\)
\(1=5\) ( vô lí)
Vậy \(x=\frac{3}{4}\)
1. A = 100
2. B = 2098
mik ko biết có đúng ko đâu nhé vì mình nhowfbanj làm cho rồi viết vô đây mà ahihi
\(\Leftrightarrow\left(1-3x\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow1-3x=-5\)
\(\Leftrightarrow3x=1-\left(-5\right)\)
\(\Leftrightarrow3x=6\)
\(\Rightarrow x=2\)
a, ta có (-5)3=-125
=>1-3x=-5
3x=1+5
3x=6
x=2
b,34-x=27
81-x=27
x=54
nha
a) \(2^{x-1}.3=48\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
b.
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\frac{\left(-3\right)^x}{3^4}=\left(-3\right)^3\)
\(\frac{\left(-3\right)^x}{\left(-3\right)^4}=\left(-3\right)^3\)
\(\left(-3\right)^x=\left(-3\right)^4.\left(-3\right)^3\)
\(\left(-3\right)^x=\left(-3\right)^7\)
x=7
\(2x+\frac{1}{5}=\frac{3}{2}x-1\)
\(\Leftrightarrow2x-\frac{3}{2}x=-1-\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{2}x=-\frac{6}{5}\)
\(\Leftrightarrow x=\frac{-6}{5}\times2\)
\(\Leftrightarrow x=-\frac{12}{5}\)
\(B=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)...\left(\frac{n.\left(n+2\right)+1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{2^2}{1.3}\right).\left(\frac{3^2}{2.4}\right).\left(\frac{4^2}{3.5}\right)...\left(\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\right)\)
\(=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(=\frac{\left(n+1\right)}{1}.\frac{2}{\left(n+2\right)}\)
\(=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}=2.\frac{n+1}{n+2}< 2\)(vì \(\frac{n+1}{n+2}< 1\))
Vậy B < 2
Ta có:
\(1+\frac{1}{1.3}=\frac{4}{1.3}=\frac{2^2}{1.3}\)
\(1+\frac{1}{2.4}=\frac{9}{2.4}=\frac{3^2}{2.4}\)
\(1+\frac{1}{3.5}=\frac{16}{3.5}=\frac{4^2}{3.5}\)
...
\(1+\frac{1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
=>
\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.2.3^2.4^2...\left(n+1\right)\left(n+2\right)}=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}\)
\(=\frac{2\left(n+2\right)-2}{n+2}=2-\frac{2}{n+2}< 2\)
Vậy B < 2