Giải phương trình:
a) $x^{3}=2;$
b) $27 x^{3}=-81;$
c) $\dfrac{1}{2} x^{3}=0,4$;
d) $\sqrt[3]{3 x+1}=4;$
e) $\sqrt[3]{3-2 x}=-3;$
f) $\sqrt[3]{x-2}+2=x$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
30,001x3=3(0,1x)3=0,1x;
\sqrt[3]{-125 a^{12}}=\sqrt[3]{\left(-5 a^{4}\right)^{3}}=-5 a^{4};3−125a12=3(−5a4)3=−5a4;
\sqrt[3]{27 x^{6}}=\sqrt[3]{\left(3 x^{2}\right)^{3}}=3 x^{2};327x6=3(3x2)3=3x2;
\sqrt[3]{-0,343 a^{3}}=\sqrt[3]{(-0,7 a)^{3}}=-0,7 a;3−0,343a3=3(−0,7a)3=−0,7a;
Ta rút gọn các biểu thức như sau:
\(\sqrt[3]{0,001x^3}=\sqrt[3]{\left(0,1x\right)^3}=0,1x.\)
\(\sqrt[3]{-125a^{12}}=\sqrt[3]{\left(-5a^4\right)^3}=-5a^4\)
\(\sqrt[3]{27x^6}=\sqrt[3]{\left(3x^2\right)^3}=3x^2\)
\(\sqrt[3]{-0,343a^3}=\sqrt[3]{\left(-0,7a\right)^3}=-0,7a\)
\(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)
\(\Rightarrow\sqrt{x}\sqrt{x}+\sqrt{x+1}\sqrt{x}=\frac{1}{\sqrt{x}}\sqrt{x}\)
\(\Rightarrow\left(\sqrt{x}\right)^2+\sqrt{x}\sqrt{x+1}=1\)
\(\Rightarrow x^2+x=1-2x+x^2\)
\(\Rightarrow x=1-2x\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\)
\(\Rightarrow S=\frac{1}{3}\)
Vậy nghiệm phương trình là \(\frac{1}{3}\)
Gọi x là số mà một bạn chọn
⇒ số còn lại là x + 5.
⇒ tích của hai số là x(x+5).
Theo đề bài ta có phương trình:
x(x+ 5) = 150
⇔ x2 + 5x = 150
⇔ x2 + 5x – 150 = 0 (*)
Phương trình (*) có: a = 1; b = 5; c = -150
⇒ Δ = 52 – 4.1.(-150) = 625 > 0
⇒ (*) có hai nghiệm
Vậy hai số mà Minh và Lan phải chọn là 10 và 15.
Hoặc hai số mà hai bạn chọn là -10 và –15.
a) x^{3}=2 \Leftrightarrow x=\sqrt[3]{2}x3=2⇔x=32.
b) 27 x^{3}=-81 \Leftrightarrow x^{3}=-3 \Leftrightarrow \sqrt[3]{x^{3}}=\sqrt[3]{-3} \Leftrightarrow x=-\sqrt[3]{3}27x3=−81⇔x3=−3⇔3x3=3−3⇔x=−33.
c) \dfrac{1}{2} x^{3}=0,004 \Leftrightarrow x^{3}=0,008 \Leftrightarrow \sqrt[3]{x^{3}}=\sqrt[3]{0,008} \Leftrightarrow x=0,2 .21x3=0,004⇔x3=0,008⇔3x3=30,008⇔x=0,2.
d) \sqrt[3]{3 x+1}=4 \Leftrightarrow 3 x+1=4^{3} \Leftrightarrow x=21.33x+1=4⇔3x+1=43⇔x=21.
e) \sqrt[3]{3-2 x}=-3 \Leftrightarrow 3-2 x=(-3)^{3} \Leftrightarrow x=15.33−2x=−3⇔3−2x=(−3)3⇔x=15.
f) \sqrt[3]{x-2}+2=x \Leftrightarrow \sqrt[3]{x-2}=x-2 \Leftrightarrow x-2=(x-2)^{3}.3x−2+2=x⇔3x−2=x−2⇔x−2=(x−2)3.
\Leftrightarrow(x-2)\left[(x-2)^{2}-1\right]=0 \Leftrightarrow\left[\begin{array}{l}x-2=1 \\ (x-2)^{2}=1\end{array}\Leftrightarrow\left[\begin{array}{l}x=2 \\ x-2=1 \\ x-2=-1\end{array}\Leftrightarrow\left[\begin{array}{l}x=2 \\ x=3 \\x=1\end{array}\right.\right.\right..⇔(x−2)[(x−2)2−1]=0⇔⎣⎢⎡x−2=1(x−2)2=1⇔⎣⎢⎡x=2x−2=1x−2=−1⇔⎣⎢⎡x=2x=3x=1.
a) x=\(\sqrt[3]{2}\) b x=\(\sqrt[3]{-3}\) c) x=0,2 d)x=21 e) x=15 f) x=3