K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Với y =0 thế vào hệ => vô lí

Với y khác 0

Cộng vế với vế hai phương trình của hệ ta có:

\(x^2y^2+xy^2=y+1\)

<=> \(\left(x^2y^2-1\right)+\left(xy^2-y\right)=0\)

<=> \(\left(xy-1\right)\left(xy+1+y\right)=0\)

TH1: \(xy-1=0\)

<=> \(x=\frac{1}{y}\)

Thế vào hệ ta có:

\(1=\frac{2}{y^2}+y\)

<=> \(y^3-y^2+2=0\)

<=> \(\left(y^3+1\right)-\left(y^2-1\right)=0\)

<=> \(\left(y+1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=-1\\\left(y+1\right)^2+1=0\left(loai\right)\end{cases}}\)

Với y = -1 ta có: x = - 1

TH2: xy + 1 + y = 0

<=> \(x=\frac{-1-y}{y}\) thế vào hệ ta có:

\(\left(y+1\right)^2=\frac{2\left(1+y\right)^2}{y^2}+y\)

<=> \(y^4+y^3-y^2-4y-2=0\)

<=> \(\left(y^4-y^3-y^2\right)+\left(2y^3-2y^2-2y\right)+\left(2y^2-2y-2\right)=0\)

<=> \(\left(y^2-y-1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=\frac{1\pm\sqrt{5}}{2}\\\left(y+1\right)^2+1=0\left(loại\right)\end{cases}}\)

Với \(y=\frac{1-\sqrt{5}}{2}\) ta có: \(x=\frac{-1+\sqrt{5}}{2}\)

Với \(y=\frac{1+\sqrt{5}}{2}\) ta có: \(x=\frac{-1-\sqrt{5}}{2}\)

Kết luận: Hệ có 3 nghiệm:...

5 tháng 12 2017

\(a,ĐKXĐ:\hept{\begin{cases}a\ge0,\sqrt{a}\ne0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}}\)

\(b,\)Rút gọn : \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(Q=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

\(Q=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a^2-1-a^2+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\)

\(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

c, bn thay vào rồi tính nha

5 tháng 12 2017

ta có: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=1^2\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=0\)

\(\Leftrightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=0\)

\(\Leftrightarrow x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\left(đpcm\right)\)