Với giá trị nào của góc nhọn \(\alpha\)thì biểu thức P = \(3\sin\alpha+\sqrt{3}\cos\alpha\)có giá trị lớn nhất? Tìm giá trị lớn nhất đó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x+1}=a\) \(ĐKXĐ:x\ge0\)
\(\sqrt{3x}=b\)
Ta có: \(a-b=b^2-a^2\)
\(\Leftrightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)+\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
Mà \(a+b+1>0\forall x\)
\(\Rightarrow a-b=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt{3x}\)
\(\Leftrightarrow x+1=3x\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
\(ĐKXĐ:x\ge0\)
Ta có PT \(\Leftrightarrow\sqrt{x+1}-\sqrt{3x}-\left(2x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\frac{\sqrt{6}}{2}\right)-\left(\sqrt{3x}-\frac{\sqrt{6}}{2}\right)-\left(2x-1\right)=0\)
\(\Leftrightarrow\frac{x+1-\frac{6}{4}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3x-\frac{6}{4}}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-\left(2x-1\right)=0\)
\(\Leftrightarrow\frac{x-\frac{1}{2}}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3\left(x-\frac{1}{2}\right)}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{1}{\sqrt{x+1}+\frac{\sqrt{6}}{2}}-\frac{3}{\sqrt{3x}+\frac{\sqrt{6}}{2}}-2\right)=0\)
\(\Rightarrow x=\frac{1}{2}\)(TMĐKXĐ)
Điều kiện: \(x;y;z>0\)
Ta có: \(A=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\frac{x}{4}+\frac{3x}{4}+\frac{y}{2}+\frac{y}{2}+\frac{z}{4}+\frac{3z}{4}+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3x}{4}+\frac{3}{x}\right)+\left(\frac{y}{2}+\frac{9}{2y}\right)+\left(\frac{z}{4}+\frac{4}{z}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)
Áp dụng BĐT Cauchy cho 2 số dương, ta có:
\(A\ge2\sqrt{\frac{3x}{4}.\frac{3}{x}}+2\sqrt{\frac{y}{2}.\frac{9}{2y}}+2\sqrt{\frac{z}{4}.\frac{4}{z}}+\frac{1}{4}\left(x+2y+3z\right)\)
\(\Rightarrow A\ge2.\frac{3}{2}+2.\frac{3}{2}+2.1+\frac{1}{4}.20\)
\(\Rightarrow A\ge13\)
Dấu = xảy ra khi \(x=2\)\(;\)\(y=3\)\(;\)\(z=4\)
Vậy \(A_{Min}=13\Leftrightarrow x=;y=3;z=4\)
a) Hàm số (1) đồng biến khi: \(m-1>0\Rightarrow m>1\)
b) (d) đi qua điểm A(-1;2) suy ra x = -1 và y = 2
Thay x = -1 và y = 2 vào hàm số (1) ta có: \(2=\left(m-1\right)\times\left(-1\right)+2-m\Leftrightarrow2=1-m+2-m\)
\(2=-2m+3\Leftrightarrow m=\frac{1}{2}\)
Xét tam giác ABH và tam giác AHC có:
góc H1= góc H2(=90o)
góc A1= góc C1(Phụ góc A2)
\(\Rightarrow\)\(\Delta ABH\Omega\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AH}=\frac{AH}{HC}\Rightarrow AH^2=AB.HC=3.3,2=9,6\)
\(\Rightarrow AH=\sqrt{9,6}\approx3,1\left(cm\right)\)
Vây AH=3,1cm
Ta chứng minh bđt: \(\frac{x}{\sqrt{x-1}}\ge2\)
Thật vậy ta có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\RightarrowĐPCM\)
Về bài toán, ta có:
\(\frac{a^2}{b-1}+\frac{b^2}{b-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\ge8\)
P/s: Ko chắc
\(\frac{a^2}{a-1}+\frac{^2b}{b-1}\)\(min\)
\(\Rightarrow\)a-1 min,b-1 min
mà a,b>1\(\Rightarrow\)a-1,b-1>0\(\Rightarrow\)a-1,b-1=1\(\Rightarrow\)a,b=2
vậy
\(=\sqrt{3}\left(\sqrt{3}sina+cosa\right)\)
\(=\sqrt{3}\cdot2\left(\frac{\sqrt{3}}{2}sina+\frac{1}{2}cosa\right)\)
\(=2\sqrt{3}\left(cos30sina+sin30cosa\right)\)
\(=2\sqrt{3}sin\left(a+30\right)\)
Ta có \(-1\le sin\left(a+30\right)\le1\)
\(-2\sqrt{3}\le2\sqrt{3}sin\left(a+30\right)\le2\sqrt{3}\)
P đạt GTLN
\(\Leftrightarrow2\sqrt{3}sin\left(a+30\right)=2\sqrt{3}\)
\(sin\left(a+30\right)=1\)
\(a+30=90+k360\) ( vì a góc nhọn nên bỏ k 360 độ đi )
\(a+30=90\)
\(a=60\)
Vậy P dạt GTLN là \(2\sqrt{3}\) \(\Leftrightarrow a=60\)