rút gọn
\(\frac{x^3+2x^2-4}{x^3-3x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,x^2+4x+3=x^2+3x+x+3.\)
\(=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)
\(c,16x-5x^2-3=x-5x^2+15x-3\)
\(=x\left(1-5x\right)+3\left(5x-1\right)\)
\(=\left(x+3\right)\left(1-5x\right)\)
\(d,x^4+4=x^4+4x^2+4-4x^2=\left(x+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
x khác 1
\(N=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2+4}{\left(x+1\right)\left(x^2+x+1\right)}\)
\(N=\frac{x^2+2x-x-2-2x^2-2x-2+2x^2+4}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x}{x^2+x+1}\)
Xét hiệu 1/3-N=\(\frac{1}{3}-\frac{x}{x^2+x+1}=\frac{x^2+x+1-3x}{3\left(x^2+x+1\right)}=\frac{x^2-2x+1}{3\left(x^2+x+1\right)}=\frac{\left(x-1\right)^2}{3\left(x^2+x+1\right)}>0\)với mọi x khác 1
=> 1/3 >N
\(S_{ABC}=\frac{CE.CD}{2},S_{ABC}=\frac{DE.CI}{2}\Rightarrow CE.CD=DE.CI\)
a) M xác định khi \(x+1\ne0\)
\(x^2+1\ne0\)
\(x^2+2x+1=\left(x+1\right)^2\ne0\)
\(\Leftrightarrow x\ne\pm1\)
b) \(M=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{x^2+2x+1}-\frac{1}{x^2-1}\right)\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{\left(x+1\right)^2}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}-\frac{1\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\right)\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{\left[1\left(x^2-1\right)\right]-1\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\right)\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{x^2-1-1\left(x^2+2x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{x^2-1-x^2-2x-1}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{-2x-2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{1}{x+1}+\frac{\left(x-x^3\right)\left(-2x-2\right)}{\left(x^2+1\right)\left(x^2-1\right)\left(x+1\right)^2}\)\(=\frac{1}{x+1}+\frac{\left(x-x^3\right)\left(-2x-2\right)}{\left(x^4-1\right)\left(x+1\right)^2}\)
\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)\left(x+1\right)}{\left(x^4-1\right)\left(x+1\right)^2}\)\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)\left(x+1\right)}\)
\(=\frac{\left(x^4-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^4-1\right)\left(x+1\right)}+\frac{-2\left(x-x^3\right)\left(x+1\right)}{\left(x^4-1\right)\left(x+1\right)}\)
\(=\frac{\left(x^4-1\right)}{\left(x+1\right)\left(x^4-1\right)}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)}\)\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)}\)??? Chắc hết rút được rồi :v
Câu b) hơi dài quá rồi.Làm lại
b) \(M=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{x^2+2x+1}-\frac{1}{x^2-1}\right)\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{\left(x+1\right)^2}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{x-1}{\left(x+1\right)^2\left(x-1\right)}-\frac{x+1}{\left(x+1\right)^2\left(x-1\right)}\right)\)
\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{\left(x-1\right)-\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right)\)\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{-2}{\left(x+1\right)^2\left(x-1\right)}\)
\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^2+1\right)\left(x+1\right)^2\left(x-1\right)}\)\(=\frac{1}{x+1}+\frac{2x\left(x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)^2\left(x-1\right)}\)
\(=\frac{1}{x+1}+\frac{2x}{\left(x^2+1\right)\left(x+1\right)}=\frac{x+1}{x^2+1}\) (Quy đồng và rút gọn)
Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !
Hình như bạn viết sai đề bài thì phải.