Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
Bài 17:
\(\widehat{G_3}\) = \(\widehat{G_1}\) = 1150 (hai góc đối đỉnh)
\(\widehat{G_2}\) = \(\widehat{G_4}\) = 1800 - 1150 = 650
\(\widehat{H_4}\) = \(\widehat{H_1}\) = 1150 (hai góc đối đỉnh)
\(\widehat{H_2}\) = \(\widehat{H_3}\) = \(\widehat{G_4}\) = 650
a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)
\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)
b)
\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)
\(=-14\)
c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)
\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)
Chu vi đáy là:
\(6.3=18\) ( dm )
Chiều cao cột mốc là:
\(270:18=15\) ( dm )
Đ/S:...
Chu vi đáy:
\(6\cdot3=18\left(dm^2\right)\)
Chiều cao cột mốc:
\(270:18=15\left(dm\right)\)
Đáp số: 15dm
a) Thể tích hình lập phương là: 4 . 4 . 4 = 64 (cm3)
b) Độ dài cạnh hình lập phương mới là: 4 . 3 = 12 (cm)
Thể tích hình lập phương mới là: 12 . 12 .12 = 1728 (cm3)
c) Thể tích hình lập phương mới gấp số lần thể tích hình lập phương ban đầu là: 1728 : 64 = 27 (lần)
112.
a) (a + b)(c + d) = ac + ad + bc + bd
b) (a - b)(c - d) = ac - ad - bc + bd
113.
a) \(A=\dfrac{\dfrac{-6}{5}+\dfrac{6}{19}-\dfrac{6}{23}}{\dfrac{9}{5}-\dfrac{9}{19}+\dfrac{9}{23}}=\dfrac{-6\left(\dfrac{1}{5}-\dfrac{1}{19}+\dfrac{1}{23}\right)}{9\left(\dfrac{1}{5}-\dfrac{1}{19}+\dfrac{1}{23}\right)}=\dfrac{-2}{3}\)
b) \(B=\dfrac{\dfrac{1}{6}-\dfrac{1}{39}+\dfrac{1}{51}}{\dfrac{1}{8}-\dfrac{1}{52}+\dfrac{1}{68}}=\dfrac{\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{13}+\dfrac{1}{17}\right)}{\dfrac{1}{4}\left(\dfrac{1}{2}-\dfrac{1}{13}+\dfrac{1}{17}\right)}=\dfrac{4}{3}\)
114. Để \(A=\dfrac{2n+7}{n+1}\) là một số nguyên thì \(\left(2n+7\right)⋮\left(n+1\right)\). Suy ra
\(\left(2n+7\right)-2\left(n+1\right)⋮\left(n+1\right)\)
\(5⋮\left(n+1\right)\)
\(\left(n+1\right)\inƯ\left(5\right)\)
\(\left(n+1\right)\in\left\{1;5;-1;-5\right\}\)
\(n\in\left\{0;4;-2;-6\right\}\)
Vậy để A là một số nguyên thì \(n\in\left\{0;4;-2;-6\right\}\)