2.(x-3)+3x+0.5=\(\dfrac{3}{4}\)
4x+2+4x=272
(1,2-5x).(2\(\dfrac{1}{8}\) +1/2 x)=0
GIÚP MÌNH VỚI !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.(x-3)+3x+0.5=\(\dfrac{3}{4}\)
4x+2+4x=272
(1,2-5x).(2\(\dfrac{1}{8}\) +1/2 x)=0
GIÚP MÌNH VỚI !!!!
\(\left|\dfrac{1}{2}x\right|=3-2x\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=3-2x\\\dfrac{1}{2}x=-3+2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x+2x=3\\\dfrac{1}{2}x-2x=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{5}{2}x=3\\-\dfrac{3}{2}x=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=2\end{matrix}\right.\)
`2:(1/2-2/3)^2+0,125^3xx8^3-(-12)^4:36^2`
`=2:(-1/6)^2+(0,125*8)^3-12^4:6^4`
`=2:1/36+1-(12:6)^4`
`=2xx36+1-2^4`
`=72+1-16`
`=73-16`
`=57`
2:(\(\dfrac{1}{2}\)-\(\dfrac{2}{3}\))\(^2\)+0,125\(^3\)x8\(^3\)-(-12)\(^4\):36\(^2\)
=2:(\(\dfrac{-1}{6}\))\(^2\)+\(\dfrac{1}{512}\)x512+12\(^4\):1296
=2:\(\dfrac{1}{36}\)+\(\dfrac{1}{512}\)x512+20736:1296
=72+1+16
=73+16
=89
Không bình luận không liên quan đến nội dung của câu hỏi, làm phiền bạn tus.
Lời giải:
$|1-\sqrt{23}|+23-\sqrt{23}-|-2023|^0=\sqrt{23}-1+23-\sqrt{23}-1$
$=23-2=21$
\(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\\ \Leftrightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\\ \Leftrightarrow x\left(2+3\right)=\dfrac{3}{4}-\dfrac{1}{2}+6\\ \Leftrightarrow5x=\dfrac{25}{4}\\ \Leftrightarrow x=\dfrac{25}{4}:5=\dfrac{5}{4}\\ ---\\ 4^{x+2}+4^x=272\\ \Leftrightarrow4^x\left(4^2+1\right)=272\\ \Leftrightarrow4^x.17=272\\ \Leftrightarrow4^x=\dfrac{272}{17}=16=4^2\\ Vậy:x=2\\ ----\\ \left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1,2-5x=0\\2,125+0,5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1,2\\0,5x=-2,125\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}=0,24\\x=\dfrac{-2,125}{0,5}=-4,25\end{matrix}\right.\)
a) \(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\)
\(\Rightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow5x-6=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\Rightarrow5x-6=\dfrac{1}{4}\)
\(\Rightarrow5x=\dfrac{1}{4}+6\)
\(\Rightarrow5x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:5\)
\(\Rightarrow x=\dfrac{5}{4}\)
b) \(4^{x+2}+4^x=272\)
\(\Rightarrow4^x\cdot4^2+4^x\cdot1=272\)
\(\Rightarrow4^x\cdot\left(16+1\right)=272\)
\(\Rightarrow4^x\cdot17=272\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
c) \(\left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1,2-5x=0\\\dfrac{15}{8}+\dfrac{1}{2}x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1,2\\\dfrac{1}{2}x=-\dfrac{15}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}\\x=-\dfrac{15}{8}:\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{25}\\x=-\dfrac{15}{4}\end{matrix}\right.\)